亚洲狠狠干,亚洲国产福利精品一区二区,国产八区,激情文学亚洲色图

一種可快速實現(xiàn)復合衰落信道累積分布性能評估的方法

文檔序號:10660533閱讀:643來源:國知局
一種可快速實現(xiàn)復合衰落信道累積分布性能評估的方法
【專利摘要】本發(fā)明公開了一種可快速實現(xiàn)復合衰落信道累積分布性能評估的方法,包括以下幾個步驟:(1)采用Gamma分布近似Lognormal分布用于模擬陰影效應,進而構建Gamma?Gamma分布用于近似原Gamma?Lognormal復合衰落信道模型;(2)在此近似模型的基礎上,推導出以Meijer?G函數(shù)表示的接收信噪比累積分布函數(shù)的閉合表達式;(3)由Meijer?G函數(shù)計算出原復合衰落信道累積分布的性能。本發(fā)明所提出的Gamma?Gamma分布近似方案可以簡化原精確模型的復雜無窮積分的表達,從而得出接收信噪比累積分布函數(shù)的閉合形式,進而降低CDF函數(shù)公式計算的復雜度,有利于快速分析、評估通信系統(tǒng)。
【專利說明】
一種可快速實現(xiàn)復合衰落信道累積分布性能評估的方法
技術領域
[0001] 本發(fā)明涉及一種可快速實現(xiàn)復合衰落信道累積分布性能評估的方法,尤其適用于 綜合考慮路徑損耗、陰影效應、小尺度衰落以及加性高斯白噪聲的復雜移動通信系統(tǒng)。
【背景技術】
[0002] 無線通信系統(tǒng)的通信性能在很大程度上受制于系統(tǒng)工作的無線通信信道。在無線 通信系統(tǒng)中,衰落是指接收端接收到的信號幅度和相位隨著傳輸?shù)牟煌窂胶蜁r間變化而 發(fā)生隨機改變的現(xiàn)象,這種現(xiàn)象將極大地影響接收機的性能。由于衰落反映的一個方面是 信號功率問題,所以根據(jù)功率減小的快慢和程度,人們將衰落分成大尺度衰落和小尺度衰 落。小尺度衰落是指電磁波在信道傳播過程中受到反射、散射、繞射等因素的影響而導致接 收端所接收的信號是來自各方向的電磁波的疊加,該信號在小范圍內能夠引起劇烈的波動 即多徑衰落;所謂的大尺度衰落是指信號在傳播過程中由發(fā)射機和接收機之間的障礙物如 建筑物、高山和叢林等的阻擋造成的能量損耗和波動。在實際的無線通信系統(tǒng)中,天線收發(fā) 兩端之間的傳播路徑的多樣性和各種復雜的地形會導致信道的小尺度衰落具有非常強的 隨機性;此外,現(xiàn)代無線通信系統(tǒng)中收發(fā)端的天線在小區(qū)內間隔較遠,例如由于接入距離的 不同使得每個分布式天線端口(基站)與移動臺之間的信號所經(jīng)歷的路徑損耗不同,所以天 線端口(基站)與移動臺之間的無線信號在傳輸過程中經(jīng)歷的衰落就不僅僅是小尺度衰落, 還需考慮諸如陰影衰落、路徑損耗等大尺度衰落因素的不利影響。
[0003] 常見的大尺度傳播模型一般包括對數(shù)距離路徑損耗和對數(shù)正態(tài)陰影模型,而小尺 度衰落模型則包括Nakagami衰落、瑞利衰落和萊斯衰落等。由于在實際的無線通信環(huán)境中, Nakagami分布能很好地對包括城市在內的衰落信道中傳輸?shù)男盘柊j進行建模,并綜合了 常用的瑞利和萊斯分布等純散射和疊加視距傳輸?shù)那樾危试撃P鸵唤?jīng)提出就得到業(yè)界的 廣泛認可與應用。

【發(fā)明內容】

[0004] 針對現(xiàn)有技術存在的不足,本發(fā)明目的是提供一種可快速實現(xiàn)復合衰落信道累積 分布性能評估的方法,本發(fā)明所提出的Gamma-Gamma分布近似方案可以簡化原精確模型的 復雜無窮積分的表達,從而得出接收信噪比累積分布函數(shù)的閉合形式,進而降低CDF函數(shù)公 式計算的復雜度,有利于快速分析、評估通信系統(tǒng)諸如中斷概率、信道容量等性能指標。
[0005] 為了實現(xiàn)上述目的,本發(fā)明是通過如下的技術方案來實現(xiàn):
[0006] 本發(fā)明的一種可快速實現(xiàn)復合衰落信道累積分布性能評估的方法,包括以下幾個 步驟:
[0007] (1)設置信道參數(shù),采用Gamma分布近似(近似指的是Gamma分布的概率密度函數(shù) (TOF)和Lognormal分布的概率密度函數(shù)形狀相似,也即兩者的概率密度函數(shù)曲線能較好地 相互重合。為本領域通用術語)Lognorma 1分布用于模擬陰影效應,進而構建Gamma-Gamma分 布用于近似(該近似指的就是Gamma-Gamma分布的FOF和原Gamma-Lognormal分布的FOF相 似。為本領域通用術語)原Ga_a-Lognormal復合衰落信道模型;
[0008] (2)在復合衰落信道模型(此模型指:用來近似的Gamma-Gamma分布模型)的基礎 上,推導出以Meijer-G函數(shù)表示的接收信噪比累積分布函數(shù)的閉合表達式;
[0009] ( 3)由Mei jer-G函數(shù)通過查閱公式值列表或者數(shù)值計算軟件(如Matlab或 Mathematics)計算出原復合衰落信道累積分布的性能。
[0010] 步驟(1)中,所述復合衰落信道模型的構建方法如下:
[0011]在小尺度Nakagami衰落信道下,無線通信系統(tǒng)傳輸信號的包絡α服從Nakagami分 布,其H)F為:
[0013] 上式中m和ω是Nakagami分布的兩個重要參數(shù),表達式分別為:
[0015] 其中,E[ ·]表示求均值,Var[ ·]表示求方差,Γ( ·)表示伽馬函數(shù),ω是衰落幅 度α的均方值,m被稱為形狀因子或衰落指數(shù),表示此時小尺度衰落的嚴重程度,其取值滿足 m 彡 1/2;
[0016] 衰落指數(shù)m的不同取值存在幾種特殊情況:當m= 1/2時,其退化為單邊高斯分布;當m= 1 時,正好是瑞利分布;當m>l時,Nakagami分布可以等效為萊斯因子為 的萊斯分布;
[0017] 在考慮該Nakagami衰落信道中存在加性高斯白噪聲的情況下,接收端每個符號對 應的平均接收信噪比;Γ和瞬時接收信噪比γ存在如下關系:
[0019]其中,No和Es分別為高斯白噪聲的功率譜密度和信號發(fā)送功率;
[0020]依據(jù)上式可知,單個符號的瞬時接收信噪比γ和接收信號包絡α兩者概率密度函 數(shù)之間存在如下關系:
[0022]根據(jù)隨機變量PDF與其函數(shù)所得新隨機變量TOF之間的雅克比行列式變換規(guī)則,可 得接收單個符號瞬時信噪比γ的roF為
[0024] 該表達式清楚地說明隨機變量γ服從Gamma分布;
[0025] 如果信道中同時存在大尺度路徑損耗與陰影衰落,則其平均接收信噪比^服從對 數(shù)正態(tài)分布,其H)F為
[0027]上式中,ξ = 10/1η10為一固定常數(shù);以和〇分別為障礙物對接收信號包絡功率產(chǎn)生 的平均路徑損耗和隨機波動標準差;
[0028]在綜合考慮Nakagami衰落、路徑損耗和陰影衰落的情況下,可得此時復合衰落信 道模型的接收信噪比γ的roF為:
[0030] 其中i指的是平均接收信噪比,同時也是該無窮積分的自變量,從上式(7)的表達 形式上可以看出,模擬實際復雜通信環(huán)境中的復合衰落信道模型其接收信噪比服從Ga_a-Lognormal 分布。
[0031] 步驟(2)中,所述接收信噪比累積分布函數(shù)的閉合表達式如下:
[0032]對(7)式得到的PDF進行積分即可得接收信噪比γ的CDF為:
[0034]用Gamma分布代替表達式(7)中的對數(shù)正態(tài)分布以對對數(shù)陰影衰落進行建模,也即 以Ga_a*布表示的平均接收信噪比的PDF為:
[0036] 上式中,η為Gamma分布的階數(shù);X表示平均功率;由Gamma分布得到的近似公式(9) 與原精確Lognormal分布得到的公式(6)之間,核心參數(shù)間的變換關系是:
[0038] 上式中,Φ( ·)和V (·)分別是digamma和trigamma函數(shù);所以可得到近似后的復 合衰落信道中接收信噪比γ的FOF為:

[0040]從上式(11)的表達形式可以看出,構建的近似復合衰落信道模型其接收信噪比服 [0042]其中,K(m_n)( ·)是(m-n)階第二類修正Bessel函數(shù);再對上式進行積分可得接收 信噪比γ的⑶F為
[0044] 其中(4)是Mei jer-G函數(shù)且0<k<q,(XKp<q;k,1,p,q為整數(shù);
[0045] 公式(13)給出了一種可以用工程數(shù)學上常用的表列函數(shù)(是專業(yè)術語,英文名為 "Tabulated function",翻譯過來就是"表列函數(shù)")來表示的,復合衰落信道接收信噪比 CDF的閉合表達式通過數(shù)值仿真軟件計算。
[0046] 上述數(shù)值仿真軟件具體采用的是Mat lab或者Mathematic。
[0047] 本發(fā)明提出的一種快速實現(xiàn)復合衰落信道累積分布函數(shù)性能評估的方法,使之便 于分析系統(tǒng)諸如中斷概率、信道容量等性能指標。該方案是在構建復合衰落模型時,仍以 Nakagami分布反映傳輸信號的小尺度衰落,而采用Gamma分布近似對數(shù)正態(tài)(Lognormal)分 布來描述路徑損耗和陰影效應的大尺度衰落特性,得出經(jīng)過近似后的接收端每個符號信噪 比的概率密度函數(shù)服從Ga_a-Gamma分布?;诖?,該復合衰落信道的累積分布函數(shù)即可化 簡為一個以所謂"表列函數(shù)" Meijer-G函數(shù)表示的閉合表達式,這將有利于進行計算機快速 數(shù)值仿真以分析復合衰落信道的特性。
【附圖說明】
[0048] 圖1為基于蜂窩小區(qū)結構的無線通信系統(tǒng)通用模型圖;
[0049] 圖2為本發(fā)明的一種可快速實現(xiàn)復合衰落信道累積分布性能評估的方法工作流程 圖;
[0050] 圖3為以衰落指數(shù)m作變量,采用Gamma-Gamma近似復合衰落信道接收信噪比累積 分布特性與精確Ga_a-lognormal累積分布函數(shù)曲線對比圖;
[0051] 圖4為以陰影衰落程度〇作變量,采用Gamma-Gamma近似復合衰落信道接收信噪比 累積分布特性與精確累積分布函數(shù)曲線對比圖;
[0052] 圖5為以平均路徑損耗μ作變量,采用Gamma-Gamma近似復合衰落信道接收信噪比 累積分布特性與精確累積分布函數(shù)曲線對比圖。
【具體實施方式】
[0053] 為使本發(fā)明實現(xiàn)的技術手段、創(chuàng)作特征、達成目的與功效易于明白了解,下面結合
【具體實施方式】,進一步闡述本發(fā)明。
[0054]本發(fā)明的實施例可以廣泛應用于存在復雜通信環(huán)境的現(xiàn)代無線通信系統(tǒng),即通過 提出一種快速評估信道累積分布性能的方法為諸如無線通信系統(tǒng)中斷概率及信道容量的 分析與評估提供有力依據(jù)。包含復合衰落信道的現(xiàn)代無線通信系統(tǒng)的一般模型示意圖如圖 1所示:在一個類似蜂窩結構的無線通信環(huán)境中,基站發(fā)射的無線信號在區(qū)域范圍內進行遠 距離傳輸時,由于信號在傳輸過程中會遇到諸如高大建筑、叢林等障礙物的阻擋而發(fā)生大 尺度衰落;而信號在到達接收端附近時,由于無線信號受到周圍散射、反射環(huán)境等因素的影 響而產(chǎn)生多徑小尺度衰落。所以類似手機等移動設備的接收端接收的信號就是發(fā)送端發(fā)送 的原始信號通過具有很強隨機性的信道后得到的,也因此,對無線通信信道的建模研究一 直都是移動通信研究過程中的重點。
[0055]本發(fā)明在綜合考慮路徑損耗與陰影效應等大尺度衰落、Nakagami小尺度衰落以及 白噪聲的情況下構建了一個符合實際通信傳輸條件的復合衰落信道模型,基于該模型得到 的接收信號信噪比的概率密度函數(shù)(Probability Density Function JDF)是一種精確的 信號功率統(tǒng)計特性表達式,在此基礎上依據(jù)該TOF表達式得到的累積分布函數(shù)(Cumulat i ve Distribution Function,⑶F)則可以進一步評估現(xiàn)代通信系統(tǒng)中諸如中斷概率、信道容量 等重要系統(tǒng)性能指標,故對該CDF函數(shù)的計算與評估就顯得尤為重要。由于上述復合衰落信 道接收信號信噪比的TOF表達式通常是一個復雜的無窮積分形式,故無法進行化簡得到閉 型的累積分布函數(shù)表達式,所以不利于進一步開展相關研究,其已成為現(xiàn)代通信系統(tǒng)性能 分析的一個難點。本發(fā)明即給出一種針對上述復合衰落信道的簡化近似模型,從而能夠快 速實現(xiàn)對復合衰落信道累積分布函數(shù)特性的性能分析和研究。
[0056]參見圖2,在小尺度Nakagami衰落信道下,無線通信系統(tǒng)傳輸信號的包絡α服從 Nakagami 分布,其]為:
[0058] 上式中m和ω是Nakagami分布的兩個重要參數(shù),表達式分別為:
[0060]其中,E[ ·]表示求均值,Var[ ·]表示求方差。Γ ( ·)表示伽馬函數(shù),ω是衰落幅度α 的均方值,m被稱為形狀因子或衰落指數(shù),表示此時小尺度衰落的嚴重程度,其取值滿足1/2。 衰落指數(shù)m的不同取值存在幾種特殊情況:當m=l/2時,其退化為單邊高斯分布;當m=l時,正好 是瑞利分布;當m>l時,Nakagami分布可以等效為萊斯因子為
.的 萊斯分布。在考慮該Nakagami衰落信道中存在加性高斯白噪聲的情況下,接收端每個符號 對應的平均接收信噪比f和瞬時接收信噪比γ存在如下關系:
[0062]其中,No和Es分別為高斯白噪聲的功率譜密度和信號發(fā)送功率。依據(jù)上式可知,單 個符號的瞬時接收信噪比γ和接收信號包絡α兩者概率密度函數(shù)之間存在如下關系:
[0064]根據(jù)隨機變量PDF與其函數(shù)所得新隨機變量TOF之間的雅克比行列式變換規(guī)則,可 得接收單個符號瞬時信噪比γ的roF為
[0066]該表達式清楚地說明隨機變量γ服從Gamma分布。
[0067]如果信道中同時存在大尺度路徑損耗與陰影衰落,則其平均接收信噪比f服從對 數(shù)正態(tài)分布,其roF為
[0069]上式中,ξ = 10/1η10,μ和〇(均以dB為單位),分別為障礙物對接收信號包絡功率產(chǎn) 生的平均路徑損耗和隨機波動標準差。在綜合考慮Nakagami衰落、路徑損耗和陰影衰落的 情況下,可得此時復合衰落信道模型的接收信噪比γ的TOF為:
[0071]從上式(7)的表達形式上可以看出,模擬實際復雜通信環(huán)境中的復合衰落信道模 型其接收信噪比服從Gamma-Lognormal分布。再對上式得到的TOF進行積分即可得接收信噪 比γ的CDF為:
[0073]由公式(8)可知,復合衰落信道的接收信噪比γ的CDF為一復雜的無窮積分式,無 法寫成工程數(shù)學中通用的閉型表達式的形式,這將非常不利于開展基于該累積分布函數(shù)表 達式而建立的現(xiàn)代無線通信系統(tǒng)中諸如中斷概率、信道容量等性能指標的評估和研究工 作。所以本發(fā)明擬提供一種簡化近似方法來解決此問題,即用Gamma分布代替表達式(8)中 的對數(shù)正態(tài)分布以對對數(shù)陰影衰落進行建模,也即以Gamma分布表示的平均接收信噪比的 roF為:
[0075] 上式中,η為Gamma分布的階數(shù);X表示平均功率。由Gamma分布得到的近似公式(9) 與原精確Lognormal分布得到的公式(6)之間,核心參數(shù)間的變換關系是:
[0077] 上式中,Φ( ·)和V (·)分別是digamma和trigamma函數(shù)。所以可得到近似后的復 合衰落信道中接收信噪比γ的FOF為:
[0079]從上式(11)的表達形式可以看出,構建的近似復合衰落信道模型其接收信噪比服 從6&1111]1&-6&1111]1&分布。令七=8/^和11 = 111/乂,經(jīng)推導可得
[0081]其中,Ku-n)( ·)是(m-n)階第二類修正Bessel函數(shù)。再對上式進行積分可得接收 信噪比γ的⑶F為
[0083] 其中,Gg.(·1')是Mei jer-G函數(shù)且0<k<q,0<Kp<q;k,1,p,q為整數(shù)。公式(13) 給出了一種可以用工程數(shù)學上常用的"表列函數(shù)"來表示的,有關復合衰落信道接收信噪比 CDF的閉合表達式,該表達式可以通過諸如數(shù)值仿真軟件Matlab、Mathematic等快速、精確 計算。
[0084] 圖3是以衰落指數(shù)m作變量,采用Gamma-Gamma近似得到的復合衰落信道接收信噪 比累積分布函數(shù)與原精確累積分布函數(shù)曲線對比圖。從該圖可以看出,在給定典型大尺度 衰落影響因子如路徑損耗μ = 2(ΜΒ和陰影衰落程度〇 = 8dB的前提下,改變小尺度衰落形狀 因子m所得的近似累積分布函數(shù)CDF隨接收信噪比X變化的曲線和精確累積分布函數(shù)性能曲 線之間有比較好的近似效果,即Gamma-Gamma分布能較好地反映真實復合衰落信道的累積 分布特性。
[0085] 圖4是以陰影衰落程度〇作變量,采用Gamma-Gamma近似復合衰落信道接收信噪比 累積分布函數(shù)與精確累積分布函數(shù)曲線對比圖。在給定典型小尺度衰落影響因子如衰落指 數(shù)m=l和大尺度衰落的影響因子路徑損耗μ = 2(ΜΒ的情況下,改變陰影衰落隨機波動標準 差σ所得的近似和精確累積分布函數(shù)性能曲線之間的近似效果圖。從該圖可以看出,不論隨 機波動標準差σ如何取值,近似處理后的累積分布函數(shù)曲線圖與原精確模型曲線圖之間的 誤差較小,且兩類曲線發(fā)展趨勢基本一致,即該近似處理具有很高的精確性。
[0086] 圖5是以平均路徑損耗μ作變量,采用Gamma-Gamma近似復合衰落信道接收信噪比 累積分布函數(shù)與精確累積分布函數(shù)曲線對比圖。在給定典型大尺度衰落影響因子即衰落隨 機波動標準差〇 = 8dB和小尺度衰落影響因子即衰落指數(shù)m=l的情形下,改變平均路徑損耗 μ所得的近似累積分布函數(shù)性能曲線亦能很好的近似精確累積分布函數(shù)性能曲線。
[0087] 由以上本發(fā)明給出的具體實施過程可以看出,該對復合衰落信道累積分布性能進 行快速評估的近似處理方法在不同的衰落影響因子條件下皆具有非常強的適用性和準確 性:也即對于決定小尺度衰落嚴重程度的衰落指數(shù)m和決定大尺度衰落嚴重程度的隨機波 動標準差〇、平均路徑損耗μ的典型取值,該方法均能比較準確地近似精確接收信噪比累積 分布函數(shù)曲線,進而反映復合信道的累積分布特性。
[0088] 總之,本發(fā)明所提出的Gamma-Gamma分布近似方案可以簡化原精確模型的復雜無 窮積分的表達從而得出接收信噪比累積分布函數(shù)的閉合形式,進而降低CDF函數(shù)公式計算 的復雜度,有利于快速分析、評估通信系統(tǒng)諸如中斷概率、信道容量等性能指標。
[0089]以上顯示和描述了本發(fā)明的基本原理和主要特征和本發(fā)明的優(yōu)點。本行業(yè)的技術 人員應該了解,本發(fā)明不受上述實施例的限制,上述實施例和說明書中描述的只是說明本 發(fā)明的原理,在不脫離本發(fā)明精神和范圍的前提下,本發(fā)明還會有各種變化和改進,這些變 化和改進都落入要求保護的本發(fā)明范圍內。本發(fā)明要求保護范圍由所附的權利要求書及其 等效物界定。
【主權項】
1. 一種可快速實現(xiàn)復合衰落信道累積分布性能評估的方法,其特征在于,包括以下幾 個步驟: (1) 設置信道參數(shù),采用Gamma分布近似Lognormal分布用于模擬陰影效應,進而構建 Ga_a_Ga_a*布用于近似原Ga_a_Lognormal復合衰落信道模型; (2) 在復合衰落信道模型的基礎上,推導出以Meijer-G函數(shù)表示的接收信噪比累積分 布函數(shù)的閉合表達式; (3) 由Meijer-G函數(shù)通過查閱公式值列表或者數(shù)值計算軟件計算出原復合衰落信道累 積分布的性能。2. 根據(jù)權利要求1所述的可快速實現(xiàn)復合衰落信道累積分布性能評估的方法,其特征 在于,步驟(1)中,所述復合衰落信道模型的構建方法如下: 在小尺度Nakagami衰落信道下,無線通信系統(tǒng)傳輸信號的包絡α服從Nakagami分布,其 I3DF 為:(1) 上式中m和ω是Nakagami分布的兩個重要參數(shù),表達式分別為:(2) 其中,Ε[ ·]表示求均值,Var[ ·]表示求方差,Γ( ·)表示伽馬函數(shù),ω是衰落幅度α的 均方值,m被稱為形狀因子或衰落指數(shù),表示此時小尺度衰落的嚴重程度,其取值滿足1/ 2;衰落指數(shù)m的不同取值存在幾種特殊情況:當m= 1/2時,其退化為單邊高斯分布;當m= 1時, 正好是瑞利分布;當m>l時,Nakagami分布可以等效為萊斯因子) 的萊斯分布; 在考慮該Nakagami衰落信道中存在加性高斯白噪聲的情況下,接收端每個符號對應的 平均接收信噪比f和瞬時接收信噪比γ存在如下關系:(3) 其中,No和Es*別為高斯白噪聲的功率譜密度和信號發(fā)送功率; 依據(jù)上式可知,單個符號的瞬時接收信噪比γ和接收信號包絡α兩者概率密度函數(shù)之 間存在如下關系:⑷ 根據(jù)隨機變量PDF與其函數(shù)所得新隨機變量PDF之間的雅克比行列式變換規(guī)則,可得接 收單個符號瞬時信噪比γ的TOF為 (D) 該表達式清楚地說明隨機變量γ服從Gamma分布; 如果信道中同時存在大尺度路徑損耗與陰影衰落,則其平均接收信噪比^服從對數(shù)正 態(tài)分布,其I3DF為C6) 上式中,ξ = 10/1η10為一固定常數(shù);以和〇分別為障礙物對接收信號包絡功率產(chǎn)生的平 均路徑損耗和隨機波動標準差; 在綜合考慮Nakagami衰落、路徑損耗和陰影衰落的情況下,可得此時復合衰落信道模 型的接收信噪比γ的F1DF為:其中,^指的是平均接收信噪比,同時也是該無窮積分的自變量,從上式(7)的表達形式 上可以看出,模擬實際復雜通信環(huán)境中的復合衰落信道模型其接收信噪比服從Gamma-Lognormal 分布。3.根據(jù)權利要求2所述的可快速實現(xiàn)復合衰落信道累積分布性能評估的方法,其特征 在于,步驟(2)中,所述接收信噪比累積分布函數(shù)的閉合表達式如下: 對(7)式得到的PDF進行積分即可得接收信噪比γ的CDF為:用Gamma分布代替表達式(7)中的對數(shù)正態(tài)分布以對對數(shù)陰影衰落進行建模,也即以 Ga_a*布表示的平均接收信噪比的TOF為:(9) 上式中,η為Gamma分布的階數(shù);X表示平均功率;由Gamma分布得到的近似公式(9)與原 精確Lognorma 1分布得到的公式(6)之間,核心參數(shù)間的變換關系是:(10) 上式中,Φ( ·)和V (·)分別是digamma和trigamma函數(shù);所以可得到近似后的復合衰 落信道中接收信噪比γ的F1DF為: (11) 從上式(11)的表達形式可以看出,構建的近似復合衰落信道模型其接收信噪比服從 6已臟已-6已臟已分布;令七=8/乂和11=111/乂,經(jīng)推導可得(12) 其中,Ku-n)( ·)是(m-n)階第二類修正Bessel函數(shù);再對上式進行積分可得接收信噪比 γ的CDF為其中,丨(.丨·)是Mei jer-G函數(shù)且(Xk彡q,(XKp彡q;k,l,p,q為整數(shù); 公式(13)給出了一種可以用工程數(shù)學上常用的表列函數(shù)來表示的,復合衰落信道接收 信噪比CDF的閉合表達式通過數(shù)值仿真軟件計算。4.根據(jù)權利要求3所述的可快速實現(xiàn)復合衰落信道累積分布性能評估的方法,其特征 在于,所述數(shù)值仿真軟件具體采用的是Matlab或者Mathematic。
【文檔編號】H04W24/06GK106027183SQ201610371412
【公開日】2016年10月12日
【申請日】2016年5月30日
【發(fā)明人】孫蔓, 李岳衡, 奉鳳, 薛團結, 郭臣, 徐榮蓉, 孫得娣, 潘進勇, 居美艷, 黃平
【申請人】河海大學
網(wǎng)友詢問留言 已有0條留言
  • 還沒有人留言評論。精彩留言會獲得點贊!
1