亚洲狠狠干,亚洲国产福利精品一区二区,国产八区,激情文学亚洲色图

一種測量數(shù)據(jù)丟失情況下的多目標(biāo)跟蹤方法與流程

文檔序號:11134407閱讀:1975來源:國知局
一種測量數(shù)據(jù)丟失情況下的多目標(biāo)跟蹤方法與制造工藝

本發(fā)明涉及目標(biāo)跟蹤技術(shù)領(lǐng)域,特別是一種測量數(shù)據(jù)丟失情況下的多目標(biāo)跟蹤方法。



背景技術(shù):

隨著非傳統(tǒng)防務(wù)及安全挑戰(zhàn)的不斷涌現(xiàn),多目標(biāo)跟蹤算法的研究成為一個(gè)熱點(diǎn)。而在多目標(biāo)跟蹤算法中,有兩類主要方法,數(shù)據(jù)關(guān)聯(lián)(如PDA、JPDA)和繞過關(guān)聯(lián)直接處理(如PHD、CPHD)。在目標(biāo)個(gè)數(shù)較多且含雜波時(shí),數(shù)據(jù)關(guān)聯(lián)(PDA等)的計(jì)算量會(huì)非常大,不利于工程應(yīng)用。而近年來,多目標(biāo)跟蹤研究專家Ronald P.S.Mahler教授提出了基于有限集統(tǒng)計(jì)學(xué)(FISST)的隨機(jī)有限集(random finite set,RFS)理論,在此基礎(chǔ)上推出概率假設(shè)密度(Probability Hypothesis Density,PHD)濾波器。PHD濾波方法將集函數(shù)積分方法變換為單個(gè)目標(biāo)的積分,它首先跟蹤整個(gè)目標(biāo)群,隨后再去檢測每個(gè)變量,然而PHD濾波也存在一些問題,如漏檢敏感,無數(shù)目分布等。針對這一問題,Ronald P.S.Mahler教授提出了勢概率假設(shè)密度(CPHD)濾波器,相比較PHD濾波器,CPHD濾波器能在傳遞概率密度假設(shè)函數(shù)的基礎(chǔ)上對目標(biāo)的數(shù)目分布也進(jìn)行更新,在目標(biāo)的估計(jì)方面做的比PHD更好。

在實(shí)際雷達(dá)量測信息中,由于大多數(shù)采用機(jī)載脈沖多普勒雷達(dá),而多普勒盲區(qū)不可避免的會(huì)存在并導(dǎo)致部分目標(biāo)測量信息的丟失,從而影響濾波精度。因此,需要一個(gè)魯棒的濾波算法,能夠在目標(biāo)量測數(shù)據(jù)丟失(雷達(dá)盲區(qū))情況下保持其濾波精度。在濾波過程中,改進(jìn)算法更新中的增益矩陣是一種常見的方法,通過引入比例因子調(diào)節(jié)濾波算法的增益矩陣,降低算法在目標(biāo)數(shù)據(jù)丟失時(shí)給濾波精度帶來的影響,以提高濾波器的魯棒性。雖然CPHD濾波器的性能優(yōu)于PHD濾波器,但是CPHD濾波器的計(jì)算量也比PHD濾波器多得多,在CPHD濾波器中,計(jì)算復(fù)雜度為O(NM3),而相比之下在PHD濾波器中的計(jì)算復(fù)雜度只有O(NM),其中N為跟蹤的目標(biāo)數(shù)目,M為當(dāng)前觀測集中的觀測數(shù)目。從計(jì)算復(fù)雜度可以看出,CPHD濾波器比PHD濾波器大,而當(dāng)前觀測集中的觀測數(shù)目M作為計(jì)算復(fù)雜度的關(guān)鍵部分也比跟蹤的目標(biāo)數(shù)目N要大。目前,高斯混合概率假設(shè)密度濾波器(GM-CPHD)進(jìn)行目標(biāo)跟蹤時(shí),在雷達(dá)多普勒存在盲區(qū),且計(jì)算復(fù)雜度過大、計(jì)算效率低。



技術(shù)實(shí)現(xiàn)要素:

本發(fā)明的目的在于提供一種測量數(shù)據(jù)丟失情況下的多目標(biāo)跟蹤方法,通過引入比例因子提高濾波器的魯棒性,通過自適應(yīng)門限減小計(jì)算量。

實(shí)現(xiàn)本發(fā)明目的的技術(shù)解決方案為:一種測量數(shù)據(jù)丟失情況下的多目標(biāo)跟蹤方法,包括以下步驟:

步驟1,對于多目標(biāo)跟蹤,目標(biāo)狀態(tài)集Xk={xk,1,…,xk,m(k)},m(k)是目標(biāo)狀態(tài)向量個(gè)數(shù),下標(biāo)k表示k時(shí)刻;目標(biāo)狀態(tài)隨機(jī)有限集Ξk=Sk(Xk-1)∪Nk(Xk-1),其中Sk(Xk-1)、Nk(Xk-1)分別為原保存和新產(chǎn)生的目標(biāo)隨機(jī)有限集;k時(shí)刻新生目標(biāo)強(qiáng)度函數(shù)其中分別代表第i個(gè)新生目標(biāo)的權(quán)值、均值和協(xié)方差矩陣,Jγ,k為新生目標(biāo)的總數(shù);真實(shí)目標(biāo)和雜波源的新生概率假設(shè)密度為勢分布為

步驟2,初始化初始目標(biāo)的概率假設(shè)密度D0(x)及勢分布p0(n);

步驟3,預(yù)測:對目標(biāo)狀態(tài)集Xk在k+1時(shí)刻的概率假設(shè)密度及勢分布進(jìn)行預(yù)測,k≥1,得到k+1時(shí)刻的概率假設(shè)密度Dk+1|k(x)及勢分布pk+1|k(n);

步驟4,更新:對目標(biāo)狀態(tài)集Xk在k+1時(shí)刻的概率假設(shè)密度及勢分布進(jìn)行更新,k≥1,得到此時(shí)刻的概率假設(shè)密度及勢分布Dk+1(x)、pk+1(n);

步驟5,修剪合并:對目標(biāo)集強(qiáng)度函數(shù)υk+1(x)的高斯項(xiàng)進(jìn)行修剪合并,提取目標(biāo)狀態(tài)估計(jì)進(jìn)行性能評估;

步驟6,重復(fù)步驟3~5,對目標(biāo)進(jìn)行跟蹤直至目標(biāo)消失。

本發(fā)明與現(xiàn)有技術(shù)相比,其顯著優(yōu)點(diǎn)為:(1)在傳遞PHD函數(shù)的同時(shí)傳遞目標(biāo)數(shù)分布,并對概率假設(shè)密度及勢分布進(jìn)行預(yù)測和更新,可以在雜波環(huán)境下對目標(biāo)的狀態(tài)和數(shù)目準(zhǔn)確的估計(jì);(2)比例因子的引入,可以通過調(diào)節(jié)算法的增益矩陣提高濾波器的魯棒性,解決雷達(dá)多普勒盲區(qū)的數(shù)據(jù)丟失問題;(3)自適應(yīng)門限的設(shè)定,對減小濾波器的計(jì)算量起到良好的作用,使GM-CPHD濾波器的工程應(yīng)用成為可能。

附圖說明

圖1是本發(fā)明測量數(shù)據(jù)丟失情況下的多目標(biāo)跟蹤方法的流程圖。

圖2是機(jī)載雷達(dá)與目標(biāo)相對位置示意圖。

圖3是目標(biāo)量測信息圖。

圖4是本發(fā)明濾波結(jié)果圖。

圖5是本發(fā)明與傳統(tǒng)方法估計(jì)的目標(biāo)個(gè)數(shù)圖。

圖6是OSPA距離圖。

圖7是三個(gè)算法OSPA距離比較差值圖。

圖8是各目標(biāo)多普勒頻率變化圖。

圖9是算法運(yùn)行耗費(fèi)時(shí)間對比圖。

具體實(shí)施方式

下面結(jié)合附圖及具體實(shí)施例對本發(fā)明做進(jìn)一步詳細(xì)說明。

結(jié)合圖1,本發(fā)明測量數(shù)據(jù)丟失情況下的多目標(biāo)跟蹤方法,具體步驟如下:

步驟1,對于多目標(biāo)跟蹤,它的目標(biāo)狀態(tài)集Xk={xk,1,…,xk,m(k)},m(k)是目標(biāo)狀態(tài)向量個(gè)數(shù),下標(biāo)k表示k時(shí)刻;目標(biāo)狀態(tài)隨機(jī)有限集Ξk=Sk(Xk-1)∪Nk(Xk-1),其中Sk(Xk-1)、Nk(Xk-1)分別為原保存和新產(chǎn)生的目標(biāo)隨機(jī)有限集;k時(shí)刻新生目標(biāo)強(qiáng)度函數(shù)其中分別代表第i個(gè)新生目標(biāo)的權(quán)值、均值和協(xié)方差矩陣,Jγ,k為新生目標(biāo)的總數(shù);真實(shí)目標(biāo)和雜波源的新生概率假設(shè)密度為勢分布為

步驟2,初始化:主要包括初始目標(biāo)的概率假設(shè)密度D0(x)及勢分布p0(n),具體如下:

初始目標(biāo)的概率假設(shè)密度D0(x)及勢分布p0(n)的關(guān)系為:

D0(x)=n0·s0(x)

其中,s0(x)為概率密度,s0(x)峰值對應(yīng)先驗(yàn)的目標(biāo)位置;初始目標(biāo)的勢分布p0(n)是目標(biāo)數(shù)n的概率分布,p0(n)期望值為n0,即:

在高斯勢概率假設(shè)密度方法中,初始概率假設(shè)密度D0(x)符合高斯分布,D0(x)由每個(gè)目標(biāo)的正態(tài)分布概率和表示;而初始勢分布選擇為二項(xiàng)分布,則:

其中,[0,L]為目標(biāo)滿足均勻分布的區(qū)間,n0為初始目標(biāo)數(shù)的推測值,n0=Lq0,q0為二項(xiàng)式分布發(fā)生概率,為伯努利分布、CL,n為分布系數(shù)。

步驟3,預(yù)測:對目標(biāo)狀態(tài)集Xk在k+1時(shí)刻的概率假設(shè)密度及勢分布進(jìn)行預(yù)測,k≥1,得到k+1時(shí)刻的概率假設(shè)密度Dk+1|k(x)及勢分布pk+1|k(n),具體如下:

在勢概率假設(shè)密度濾波器中:目標(biāo)運(yùn)動(dòng)是獨(dú)立的、不相關(guān)的,即目標(biāo)x在k時(shí)刻雷達(dá)中出現(xiàn)的概率為bk(x)是確定的,與目標(biāo)個(gè)數(shù)、狀態(tài)等無關(guān),同理目標(biāo)消失的概率也一樣。

在k時(shí)刻,已知的參數(shù)有:概率假設(shè)密度Dk(x)、目標(biāo)數(shù)的期望nk、勢分布Pk(x),k時(shí)刻存活下來的目標(biāo)狀態(tài)集Xk的概率假設(shè)密度如下:

Dk+1|k(ξ)=∫ps(x')·fk+1|k(x|x')·Dk|k(x')dx'

其中:ps(x')表示目標(biāo)存活概率,取0.9;fk+1|k(x|x')表示單目標(biāo)馬兒可夫轉(zhuǎn)移密度;Dk|k(x')表示前一時(shí)刻目標(biāo)狀態(tài)集Xk的概率假設(shè)密度,則k時(shí)刻目標(biāo)狀態(tài)集Xk的概率假設(shè)密度Dk+1|k(x)=b(x)+∫ps(x')·fk+1|k(x|x')·Dk|k(x')dx',b(x)為衍生目標(biāo)概率;

勢分布:

其中:pk+1|k(n)為k+1時(shí)刻的預(yù)測值、j為樣本數(shù)、ps為目標(biāo)存活概率、Jk為k個(gè)高斯成分、為k時(shí)刻期望目標(biāo)數(shù),代表第j個(gè)目標(biāo)的權(quán)值,Nmax代表勢分布的最大可能數(shù),pk(l)代表前一時(shí)刻即k時(shí)刻的目標(biāo)存活概率,代表二項(xiàng)式系數(shù);

目標(biāo)數(shù)的期望值預(yù)測:

其中:分別代表期望的新生目標(biāo)數(shù)和存活目標(biāo)數(shù)。

步驟4,更新:對目標(biāo)狀態(tài)集Xk在k+1時(shí)刻的概率假設(shè)密度及勢分布進(jìn)行更新,k≥1,得到此時(shí)刻的概率假設(shè)密度及勢分布Dk+1(x)、pk+1(n)。包括對真實(shí)協(xié)方差矩陣和真實(shí)偏差進(jìn)行無偏轉(zhuǎn)換并解耦合;分析多普勒頻移背景下的傳感器測量數(shù)據(jù)丟失現(xiàn)象,引入比例因子調(diào)節(jié)系統(tǒng)增益矩陣;設(shè)置自適應(yīng)門限對量測集合進(jìn)行簡化,減小當(dāng)前觀測集中的觀測數(shù)目M,具體如下:

在預(yù)測目標(biāo)狀態(tài)的強(qiáng)度函數(shù)和預(yù)測目標(biāo)狀態(tài)集的勢分布pk+1|k已知,且高斯混合的情況下,可以得到CPHD濾波器的更新方程如下:

勢分布更新:

目標(biāo)狀態(tài)的強(qiáng)度函數(shù)更新:

目標(biāo)數(shù)更新:

其中

其中,δj(·)為均衡函數(shù),κk(·)為雜波強(qiáng)度函數(shù)。

4.1)盲區(qū)內(nèi)的跟蹤算法

在實(shí)際雷達(dá)量測信息中,由于大多數(shù)采用機(jī)載脈沖多普勒雷達(dá),而多普勒盲區(qū)不可避免的會(huì)存在并導(dǎo)致部分目標(biāo)測量信息的丟失,從而影響濾波精度。因此,需要一個(gè)魯棒的濾波算法,能夠在目標(biāo)量測數(shù)據(jù)丟失(雷達(dá)盲區(qū))情況下保持其濾波精度。在濾波過程中,改進(jìn)算法更新中的增益矩陣是一種常見的方法,通過引入比例因子調(diào)節(jié)濾波算法的增益矩陣,降低算法在目標(biāo)數(shù)據(jù)丟失時(shí)給濾波精度帶來的影響,以提高濾波器的魯棒性。

在三維坐標(biāo)系中,目標(biāo)運(yùn)動(dòng)時(shí)的多普勒頻移可以表示為:

其中Vt和Va分別是目標(biāo)和載機(jī)的運(yùn)動(dòng)速度,φ是載機(jī)航線與雷達(dá)間的偏角,β是目標(biāo)與載機(jī)間的航向偏角。

機(jī)載雷達(dá)上靜止目標(biāo)的多普勒頻移為:

多普勒盲區(qū)為|fdt|≤Δf,其中fdt=fd-fdc。此時(shí)的多普勒盲區(qū)就為[-Δf,Δf],目標(biāo)多普勒頻移為:

其中,vr是目標(biāo)相對于傳感器的徑向速度,f0是目標(biāo)輻射源的發(fā)射頻率,c是目標(biāo)輻射源信號的傳播速度,分別是目標(biāo)速度矢量在x,y,z方向上的分量,分別是載機(jī)速度矢量在x,y,z方向上的分量。

基于此,本發(fā)明提出了一種魯棒的UCM-CPHD濾波算法,具體如下:

首先,定義量測誤差向量為e(k+1):

其中,y(k+1)是第k+1時(shí)刻的目標(biāo)笛卡爾坐標(biāo)系下的量測值,是第k+1時(shí)刻的預(yù)測值,它們是3×1的向量。

然后,在增益矩陣求取公式中添加一個(gè)n維方陣S(k)用來調(diào)節(jié)GM-CPHD濾波器的增益矩陣,可得:

E(k+1)=H(k+1)P(k+1|k)HT(k+1)+(S(k)-I)R0(k+1)+R(k+1)

其中,I是單位陣,H為觀測矩陣,R0(k+1)是對角陣,其對角元素的取值為平均真實(shí)偏差R(k+1)的對角元素,即在MATLAB中計(jì)算公式如下:

R0(k+1)=diag(diag(R(k+1)))

且E(k+1)計(jì)算公式如下:

ξ是滑動(dòng)窗口數(shù)目,也就是求取E(k+1)所需數(shù)據(jù)的數(shù)量。

由此可得S(k)的計(jì)算公式:

設(shè)增益調(diào)節(jié)矩陣為S*(k),它是用來調(diào)節(jié)增益矩陣,求取公式如下:

Sii(k)是S(k)的i行i列元素,即S(k)對角線上的第i個(gè)元素。

整理后,改進(jìn)的R-UCM-CPHD濾波算法迭代步驟如下:

步驟一:求取去偏轉(zhuǎn)換量測卡爾曼濾波狀態(tài)初值和估計(jì)協(xié)方差矩陣初值P(0)。設(shè)需要濾波的目標(biāo)狀態(tài)變量包含目標(biāo)在笛卡爾坐標(biāo)系上的位置、速度和加速度,因?yàn)槭侨S的,故包含三個(gè)坐標(biāo)軸方向的位置和速度共九個(gè)變量,組成9×1向量。將接收到的前兩組目標(biāo)測量值代入公式,求得前三組數(shù)據(jù)的量測噪聲協(xié)方差矩陣:R(1)、R(2)和R(3),并根據(jù)下式求取卡爾曼濾波初值和P(0|0):

其中

設(shè)當(dāng)接收到第二組量測數(shù)據(jù)時(shí),目標(biāo)狀態(tài)變量的真實(shí)值為X,則狀態(tài)量測誤差為:

則估計(jì)協(xié)方差矩陣的初值P(0|0)為:

步驟二:計(jì)算目標(biāo)狀態(tài)預(yù)測值

步驟三:計(jì)算預(yù)測估計(jì)值協(xié)方差矩陣

P(k+1|k)=F(k)P(k|k)FT(k)+Γ(k)Q(k)ΓT(k)

步驟四:求出解耦后的量測轉(zhuǎn)換的均值偏差u(k+1),協(xié)方差R(k+1)和無偏量測值Z(k+1),特別的,當(dāng)目標(biāo)數(shù)據(jù)丟失時(shí),將使用預(yù)測值來代替量測值。

真實(shí)協(xié)方差矩陣和真實(shí)偏差中添加偏差補(bǔ)償因子,進(jìn)行無偏估計(jì)并解耦合,得到改進(jìn)的和代入更新方程,求取真實(shí)協(xié)方差矩陣和真實(shí)偏差公式如下:

μ=E[υm|rmm]=[μxyz]T

分別是和的協(xié)方差,μx、μy、μz分別為偏差μ在x、y、z軸上的投影,為協(xié)方差矩陣中的量。

噪聲協(xié)方差矩陣是一個(gè)3×3的對稱矩陣,其中非對角線上的元素Rxy,Ryz,Rxz代表著x,y,z軸的噪聲耦合相,在協(xié)方差矩陣R中,相對于主對角線上的元素Rxx,Ryy,Rzz,非對角線上的元素的影響可以忽略,此時(shí)的協(xié)方差矩陣R可以簡化成對角矩陣,即Rnew=diag(Rxx,Ryy,Rzz),則解耦后的協(xié)方差矩陣Rnew的計(jì)算量是未解耦前的33/(3×13)=9倍。具體解耦細(xì)節(jié)如下:

在笛卡爾坐標(biāo)系上,噪聲協(xié)方差矩陣R可以描述為;

Rnew=MRMT

其中,M是轉(zhuǎn)移矩陣。

此時(shí),轉(zhuǎn)換后的噪聲協(xié)方差矩陣Rnew可以寫成:

Rnew=diag(Rxx,Ryy,Rzz)

步驟五:求出增益調(diào)節(jié)矩陣S*(k)

步驟六:計(jì)算增益矩陣

K(k+1)=P(k+1|k)HT(k+1)[H(k+1)P(k+1|k)HT(k+1)+(S*(k)-I)R0(k+1)+R(k+1)]-1

步驟七:計(jì)算濾波估計(jì)值.

步驟八:計(jì)算濾波估計(jì)值協(xié)方差矩陣.

P(k+1|k+1)=P(k+1|k)-K(k+1)H(k+1)P(k+1|k)

步驟九:返回步驟二,并使k+1后進(jìn)行迭代。

與傳統(tǒng)的UCM-CPHD算法不同的是,R-UCM-CPHD算法主要是對計(jì)算增益矩陣的公式進(jìn)行修改,加入了增益調(diào)節(jié)矩陣S*(k),當(dāng)預(yù)測數(shù)據(jù)與量測數(shù)據(jù)誤差很大時(shí),此時(shí)很可能產(chǎn)生了奇異值甚至數(shù)據(jù)丟失。此時(shí)增益調(diào)節(jié)矩陣S*(k)通過之前的目標(biāo)數(shù)據(jù)信息,對增益矩陣進(jìn)行調(diào)節(jié),減小盲區(qū)導(dǎo)致的數(shù)據(jù)丟失對濾波估計(jì)值和協(xié)方差的影響。這樣,R-UCM-CPHD算法能夠改進(jìn)傳統(tǒng)的UCM-CPHD算法在盲區(qū)導(dǎo)致的數(shù)據(jù)丟失時(shí)的濾波性能,具有很好的魯棒性。

4.2)自適應(yīng)門限

在CPHD濾波器中,算法的計(jì)算量主要來自每個(gè)更新周期都要計(jì)算M+1個(gè)元素的均衡函數(shù)(即前文提到的δj(·)),其計(jì)算復(fù)雜度為O(NM3),而相比之下在PHD濾波器中的計(jì)算復(fù)雜度只有O(NM),由此可知,減小M值能更有效的降低計(jì)算復(fù)雜度。

設(shè)γ為跟蹤門限的大小,觀測維數(shù)M,殘差協(xié)方差矩陣S(k),則殘差向量d(k)的范數(shù)為g(k)=dT(k)S-1(k)d(k),g(k)為服從自由度為M的分布,當(dāng)g(k)≤γ時(shí),跟蹤門規(guī)則滿足。

首先計(jì)算出目標(biāo)量測數(shù)據(jù)落入跟蹤門內(nèi)的概率PG,結(jié)合跟蹤門規(guī)則可得:其中跟蹤門的體積為其中系數(shù)由觀測空間的維數(shù)nz決定(c1=2,c2=π,c3=4π/3)。

設(shè)置自適應(yīng)門限去掉所有和已知被探測目標(biāo)不相關(guān)的量測數(shù)據(jù),設(shè)γ為自適應(yīng)跟蹤門限的大小,觀測維數(shù)M,殘差協(xié)方差矩陣S(k),此時(shí)門限γ滿足(nz=3):

其中,PD為檢測概率,β為新源密度;根據(jù)公式,門限γ與殘差協(xié)方差矩陣S(k)有關(guān),而S(k)是一個(gè)與目標(biāo)狀態(tài)集有關(guān)的變量。從公式中可以看出,門限γ與殘差協(xié)方差矩陣S有關(guān),而S是一個(gè)與目標(biāo)狀態(tài)集有關(guān)的變量。

門限所包含的區(qū)域落入聯(lián)合門限區(qū)域的量測集合就可以表示為:與傳統(tǒng)算法相比,采用自適應(yīng)門限可能會(huì)去掉所有和已知被探測目標(biāo)不相關(guān)的量測數(shù)據(jù),減小計(jì)算量。

最后更新目標(biāo)狀態(tài)的強(qiáng)度函數(shù)υk+1|k(x)及勢分布pk+1|k(n),由于量測集合由Zk變化為引起雜波強(qiáng)度函數(shù)變化為則更新公式

雜波強(qiáng)度的變化直接影響到勢概率假設(shè)密度濾波器中高斯分量對應(yīng)權(quán)值和量測狀態(tài)集的變化,而后者的大小M恰恰是CPHD濾波器計(jì)算復(fù)雜度O(NM3)的關(guān)鍵部分,所以通過自適應(yīng)門限可以有效的減小濾波器的計(jì)算量。

步驟5,修剪合并:對目標(biāo)集強(qiáng)度函數(shù)υk+1(x)的高斯項(xiàng)進(jìn)行修剪合并,提取目標(biāo)狀態(tài)估計(jì)進(jìn)行性能評估。首先修剪,該步驟需要將小于權(quán)值τ的高斯成分濾掉。

式中是大于閾值的權(quán)值,為單個(gè)高斯分量的權(quán)值,為GM-CPHD函數(shù)中單個(gè)高斯分量的均值,為目標(biāo)狀態(tài)協(xié)方差矩陣,x為目標(biāo)狀態(tài)集,為與目標(biāo)狀態(tài)、均值和協(xié)方差矩陣有關(guān)的函數(shù),為k+1時(shí)刻的概率假設(shè)密度函數(shù);

然后合并,當(dāng)一些高斯成分間的距離小于閾值U時(shí),需要將這些高斯成分合并;最后提取權(quán)值大于τ1的高斯成分。

最后狀態(tài)估計(jì),目標(biāo)的狀態(tài)估計(jì)是提取權(quán)值大于τ1的高斯成分,其提取公式如下:其中,為單個(gè)高斯分量的權(quán)值,為GM-CPHD函數(shù)中單個(gè)高斯分量的均值,τ1為設(shè)定的門限。

性能評價(jià):對于多目標(biāo)跟蹤算法的性能評價(jià)指標(biāo),一般采用均方誤差(MSE)、均方根誤差(RMSE)、圓丟失概率(CPEP)、Wasserstein距離和OSPA距離等。一般OSPA距離可以通過水平參數(shù)c來很好地體現(xiàn)多目標(biāo)跟蹤算法對位置和目標(biāo)數(shù)目跟蹤的性能。OSPA距離定義如下:

其中,

步驟6,重復(fù)步驟3~5,對目標(biāo)進(jìn)行跟蹤直至目標(biāo)消失。

實(shí)施例1

本發(fā)明的效果可以通過以下仿真實(shí)驗(yàn)進(jìn)一步說明:

1.仿真條件

假設(shè)目標(biāo)狀態(tài)其中位置單位是m,速度單位是m/s。本仿真有四個(gè)目標(biāo),各個(gè)目標(biāo)運(yùn)動(dòng)模型是CA模型,且四個(gè)目標(biāo)的初始狀態(tài)如下:

Xt1=[300m,300m,40m,-20m/s,-20m/s,-1m/s,0m/s2,0m/s2,-2m/s2]T

Xt2=[40m,-300m,-300m,1m/s,20m/s,20m/s,2m/s2,0m/s2,0m/s2]T;

Xt3=[200m,300m,300m,-1m/s,-20m/s,-20m/s,-2m/s2,0m/s2,0m/s2]T;

Xt4=[-200m,40m,-200m,20m/s,-1m/s,20m/s,0m/s2,-2m/s2,0m/s2]T

目標(biāo)的運(yùn)動(dòng)方程:

仿真實(shí)驗(yàn)假設(shè)目標(biāo)1的出生時(shí)刻為第0s,死亡時(shí)刻為第7s,目標(biāo)2的出生時(shí)刻為第7s,死亡時(shí)刻為25s,目標(biāo)3的出生時(shí)刻為第11s,死亡時(shí)刻為37s,目標(biāo)4的出生時(shí)刻為25s,死亡時(shí)刻為第40s。設(shè)雷達(dá)采樣周期T=1s,徑向距離量測方差方位角與高低角量測方差取檢測概率PD=0.99,目標(biāo)存活概率PS=0.9,合并閾值U=4,裁剪閾值τ=1e-5,狀態(tài)估計(jì)閾值τ1=0.5,最大高斯數(shù)Jmax=100。

新出現(xiàn)的目標(biāo)符合泊松過程,bk(x)=N(x,mb,Pb),

mb=[300m,300m,40m,-20m/s,-20m/s,-1m/s,0m/s2,0m/s2,-2m/s2]T,

Pb=diag(104×[5,5,5,1,1,1,0.5,0.5,0.5]),Q=diag(10-2×[1,1,1])。

2.仿真內(nèi)容和結(jié)果分析

生成的目標(biāo)量測信息如圖3所示,量測信息中含有目標(biāo)信息和雜波信息。

各算法目標(biāo)位置估計(jì)與去除雜波后的量測值和真實(shí)值對比如圖4所示。圖中CPHD代表正常情況下的UCM-AG-CPHD,CPHD2代表加盲區(qū)情況下的UCM-AG-CPHD,CPHD3代表改進(jìn)后的加盲區(qū)R-UCM-AG-CPHD。從圖中可以看出,各CPHD算法可以對多個(gè)目標(biāo)同時(shí)跟蹤。

算法各個(gè)時(shí)刻估計(jì)的目標(biāo)個(gè)數(shù)結(jié)果如圖5所示,可以看出,各算法的估計(jì)精度大于90%,且盲區(qū)對目標(biāo)數(shù)目估計(jì)的影響較小。

由OSPA距離結(jié)果圖6可以看出,各CPHD算法不管是對目標(biāo)數(shù)目的估計(jì),還是對目標(biāo)位置的估計(jì)都具有很好地性能。

三個(gè)算法OSPA距離比較如圖7,從圖中可以看出,R-UCM-AG-CPHD算法在多目標(biāo)跟蹤方面有著良好的性能,改進(jìn)的算法(CPHD3)的跟蹤精度優(yōu)于不改進(jìn)的算法(CPHD2),說明改進(jìn)方法具有良好的效果,但顯然會(huì)比沒有盲區(qū)的算法(CPHD1)精度低。藍(lán)色部分代表CPHD3-2,即改進(jìn)的盲區(qū)算法與未改進(jìn)的盲區(qū)算法的OSPA距離差,在16~18s目標(biāo)1發(fā)生機(jī)動(dòng),數(shù)據(jù)丟失;在26~28s目標(biāo)2數(shù)據(jù)丟失;在31~33s目標(biāo)3數(shù)據(jù)丟失;在36~38s目標(biāo)4數(shù)據(jù)丟失。對應(yīng)圖中可以看到相應(yīng)的時(shí)間內(nèi)改進(jìn)的算法OSPA距離小于未改進(jìn)的(即藍(lán)色線條<0),仿真表明,改進(jìn)的算法對目標(biāo)機(jī)動(dòng)產(chǎn)生的盲區(qū)有良好的效果。

目標(biāo)多普勒頻率(徑向速度)隨仿真次數(shù)的變化情況如圖8所示。根據(jù)公式可知,目標(biāo)多普勒盲區(qū)區(qū)間是[-100 100]HZ,其中各目標(biāo)運(yùn)動(dòng)軌跡有一段落入多普勒盲區(qū)內(nèi),分別是在16~18s目標(biāo)1;在26~28s目標(biāo)2;在31~33s目標(biāo)3;在36~38s目標(biāo)4數(shù)據(jù)丟失。在這段區(qū)域內(nèi),雷達(dá)的目標(biāo)數(shù)據(jù)將會(huì)受到嚴(yán)重影響。

通過多次實(shí)驗(yàn),得到本發(fā)明改進(jìn)的算法和傳統(tǒng)UCM-PHD算法耗費(fèi)時(shí)間如圖9中,從可知在保證算法性能的前提下,本算法比改進(jìn)前的計(jì)算量相比降低8.6%左右,新算法在計(jì)算效率上的優(yōu)勢十分明顯,具有更好的工程應(yīng)用前景。

當(dāng)前第1頁1 2 3 
網(wǎng)友詢問留言 已有0條留言
  • 還沒有人留言評論。精彩留言會(huì)獲得點(diǎn)贊!
1