亚洲狠狠干,亚洲国产福利精品一区二区,国产八区,激情文学亚洲色图

基于馬爾可夫模型的隨機(jī)系統(tǒng)的pi跟蹤控制器設(shè)計(jì)方法

文檔序號(hào):8942254閱讀:852來(lái)源:國(guó)知局
基于馬爾可夫模型的隨機(jī)系統(tǒng)的pi跟蹤控制器設(shè)計(jì)方法
【技術(shù)領(lǐng)域】
[0001] 本發(fā)明涉及一種基于馬爾可夫模型的隨機(jī)系統(tǒng)的PI跟蹤控制器設(shè)計(jì)方法,它是 針對(duì)具有時(shí)滯和未知非線性的隨機(jī)系統(tǒng),利用連續(xù)馬爾可夫模型進(jìn)行描述,基于PI控制策 略對(duì)隨機(jī)系統(tǒng)進(jìn)行模型變換,根據(jù)馬爾可夫跳變系統(tǒng)隨機(jī)穩(wěn)定性理論、李雅譜諾夫理論和 線性矩陣不等式(LMI)算法,給出隨機(jī)系統(tǒng)具有隨機(jī)穩(wěn)定性能、良好跟蹤性能的充分條件, 并給出具有PI結(jié)構(gòu)的控制器的設(shè)計(jì)方法。屬于自動(dòng)控制技術(shù)領(lǐng)域。
【背景技術(shù)】
[0002] 在工業(yè)過(guò)程中,許多實(shí)際系統(tǒng)都會(huì)因內(nèi)部部件的故障維修、收到突發(fā)性環(huán)境擾 動(dòng)、子系統(tǒng)之間關(guān)聯(lián)發(fā)生改變等原因而發(fā)生結(jié)構(gòu)上的改變。1961年,Krasivskii和Lidskii 第一次引入線性切換模型,用連續(xù)時(shí)間的馬爾可夫鏈來(lái)描述系統(tǒng)不同模型結(jié)構(gòu)之間的切 換,我們把這類系統(tǒng)稱為馬爾可夫跳躍系統(tǒng)。馬爾可夫跳躍系統(tǒng)的應(yīng)用非常廣泛,在生化 系統(tǒng)、制造系統(tǒng)、電路系統(tǒng),甚至經(jīng)濟(jì)預(yù)測(cè)、車輛控制和飛行器控制等行業(yè)隨機(jī)可見(jiàn)。另外, 時(shí)滯和不確定性是實(shí)際工程中經(jīng)常面臨的主要問(wèn)題,這兩者的存在往往會(huì)導(dǎo)致系統(tǒng)的不 穩(wěn)定和較差的系統(tǒng)性能,也使得系統(tǒng)的分析變得異常復(fù)雜,因此具有時(shí)滯和不確定性的隨 機(jī)馬爾可夫跳躍系統(tǒng)的穩(wěn)定性和控制器設(shè)計(jì)問(wèn)題日益引起人們的關(guān)注。
[0003] -部分中國(guó)申請(qǐng)專利已經(jīng)在穩(wěn)定性分析、圖像分割、人臉識(shí)別、汽車聲音識(shí)別等方 面取得了一定的研究成果,然而現(xiàn)有的技術(shù)很少同時(shí)涉及時(shí)滯和參數(shù)不確定性;
[0004] 眾所周知,PI控制已經(jīng)被廣泛應(yīng)用于工程以及許多理論方法的分析當(dāng)中。在這種 技術(shù)背景下,本發(fā)明給出一種基于馬爾可夫模型的隨機(jī)系統(tǒng)的PI跟蹤控制器設(shè)計(jì)方法。利 用連續(xù)馬爾可夫模型描述同時(shí)具有狀態(tài)和輸入時(shí)滯、未知非線性、外界干擾的隨機(jī)系統(tǒng),基 于傳統(tǒng)的PI控制策略對(duì)隨機(jī)系統(tǒng)進(jìn)行模型的變換,再根據(jù)馬爾可夫跳變系統(tǒng)隨機(jī)穩(wěn)定性 理論、李雅譜諾夫理論和線性矩陣不等式(LMI)算法,提出一種具有隨機(jī)穩(wěn)定性能、跟蹤性 能的多目標(biāo)控制器設(shè)計(jì)方案,給出具有PI結(jié)構(gòu)的控制器的設(shè)計(jì)方法,進(jìn)而保證了非線性時(shí) 滯馬爾可夫隨機(jī)系統(tǒng)的隨機(jī)穩(wěn)定性能和良好的跟蹤性能。

【發(fā)明內(nèi)容】

[0005] 發(fā)明目的:針對(duì)在工業(yè)過(guò)程中許多因內(nèi)部部件的故障維修、收到突發(fā)性環(huán)境擾動(dòng)、 子系統(tǒng)之間關(guān)聯(lián)發(fā)生改變等原因而發(fā)生結(jié)構(gòu)上的改變,且經(jīng)常存在導(dǎo)致系統(tǒng)不穩(wěn)定和較差 系統(tǒng)性能的時(shí)滯和未知非線性的實(shí)際隨機(jī)系統(tǒng),利用連續(xù)馬爾可夫模型進(jìn)行描述;在現(xiàn)有 隨機(jī)系統(tǒng)跟蹤控制沒(méi)有同時(shí)考慮到時(shí)滯和非線性,以及控制器設(shè)計(jì)復(fù)雜,不易求解且對(duì)模 型有一定限制的基礎(chǔ)上,基于傳統(tǒng)的PI控制策略和線性矩陣不等式(LMI)算法,根據(jù)馬爾 可夫跳變系統(tǒng)隨機(jī)穩(wěn)定性理論、李雅譜諾夫理論提出一種具有隨機(jī)穩(wěn)定性能、跟蹤性能的 多目標(biāo)控制器設(shè)計(jì)方案,構(gòu)造出具有PI結(jié)構(gòu)的跟蹤控制器,保證了非線性時(shí)滯馬爾可夫隨 機(jī)系統(tǒng)的隨機(jī)穩(wěn)定性能和良好的跟蹤性能。
[0006] 技術(shù)方案:本發(fā)明是一種基于馬爾可夫模型的隨機(jī)系統(tǒng)的PI跟蹤控制器設(shè)計(jì)方 法,該方法具體步驟如下:
[0007] 第一步對(duì)具有時(shí)變時(shí)滯和未知非線性的結(jié)構(gòu)易發(fā)生變化的實(shí)際系統(tǒng)利用連續(xù)馬 爾可夫模型進(jìn)行描述
[0008] 其中,Z(t) e Rn是系統(tǒng)狀態(tài)向量,u(t) e Rm為控制輸入,v(t) e Rp是屬 于1^[0, )上的滿足IM 1_片零創(chuàng)ν〖|筆)的有界擾動(dòng)。τ⑴為時(shí)變時(shí)滯滿足0 < τ⑴彡τ*<00,其中邊界τ*,τ+為已知常數(shù).{r(t),t彡0}為取值于有限 狀態(tài)集KHJV的右連續(xù)馬爾可夫鏈,其狀態(tài)轉(zhuǎn)移速率矩陣Π = (Jtu)nxn, (i,j e S) 由下式確定:
[0009] 其中:limA_Q〇(A)/A = 〇(Δ > 〇),^為從模態(tài)i到模態(tài)j的轉(zhuǎn)移率,并且 滿足
對(duì)任意給定的 r(t) = i e S,AQ(i), AQd(i),BQ1(i),BQ2(i),BQv(i),F(xiàn) Q(i)均為適當(dāng)維數(shù) 的常數(shù)矩陣。fjva))為未知非線性函數(shù)滿足&(0) =0以及Lipschitz條件,即存在已 知矩陣u。使得下式成立 I IfjvjtD-fjvjt)) 11 彡 I lujvjo-vjt)) 11。
[0010] 第二步利用PI策略對(duì)隨機(jī)系統(tǒng)(1)進(jìn)行模型變換
[0011] 為了實(shí)現(xiàn)跟蹤,假設(shè)參考動(dòng)態(tài)信號(hào)為&(t) exn,且對(duì)于所有的t>0都有 Xr (t) eL2[0,①)。本發(fā)明的目標(biāo)是設(shè)計(jì)PI跟蹤控制器使得系統(tǒng)(1)的狀態(tài)向量盡可能 跟蹤給定的參考動(dòng)態(tài)?目號(hào)(t),為此定義跟蹤誤差為e(t) = Z(t)-X1^t)。
[0012] 基于非線性隨機(jī)馬爾可夫跳躍模型(1),引入如下新的狀態(tài)變量
,則隨機(jī)系統(tǒng)(1)可以轉(zhuǎn)化為以下的隨機(jī)馬爾可夫跳躍模型
[0013] 其中Φ⑴為定義在區(qū)間[-τ'0]上的初值向量連續(xù)函數(shù),S為初始模 態(tài),f(x(t))滿足 f(0) = 0 以及 ||/(λ; (Oh /41 }月| f}/ X 其中 U = diag{U。,0}· 且
[0014] 第三步PI跟蹤控制器的設(shè)計(jì)
[0015] 本步驟根據(jù)魯棒控制理論、李雅譜諾夫理論和線性矩陣不等式算法,設(shè)計(jì)PI跟蹤 控制器使隨機(jī)馬爾可夫跳躍系統(tǒng)(2)的閉環(huán)系統(tǒng)是魯棒隨機(jī)穩(wěn)定的,且隨機(jī)馬爾可夫跳躍 系統(tǒng)(1)的狀態(tài)向量Z(t)跟蹤給定的參考動(dòng)態(tài)信號(hào)&(t),跟蹤誤差盡可能小。本步驟將 采用一個(gè)定理給出隨機(jī)馬爾可夫閉環(huán)系統(tǒng)(2)魯棒隨機(jī)穩(wěn)定以及跟蹤控制問(wèn)題可解的充 分條件。
[0016] 為了解決跟蹤控制問(wèn)題,我們采用直接的PI控制策略,選取控制器
[0017] 其中KP1,K11為待確定的控制增益,基于隨機(jī)馬爾可夫跳躍系統(tǒng)(2),PI控制器能 夠被進(jìn)一步簡(jiǎn)化描述為
[0018] 第四步控制器性能檢驗(yàn)
[0019] 這一步將檢驗(yàn)控制器的設(shè)計(jì)是否滿足要求,借助于常用的數(shù)值計(jì)算和控制系統(tǒng)仿 真工具M(jìn)atlab進(jìn)行。
當(dāng)前第1頁(yè)1 2 
網(wǎng)友詢問(wèn)留言 已有0條留言
  • 還沒(méi)有人留言評(píng)論。精彩留言會(huì)獲得點(diǎn)贊!
1