本發(fā)明屬于電力系統(tǒng)自動化技術領域,涉及配電網(wǎng)的故障診斷,是一種精確的配電網(wǎng)故障行波波頭的辨識方法。
背景技術:
隨著我國國民經(jīng)濟的發(fā)展,人們對供電可靠性的要求越高,與居民用電密切相關的配電網(wǎng)運行可靠性便越高。這便要求對配電網(wǎng)的故障能夠準確識別,迅速排除。然而,配電網(wǎng)的故障定位問題長期以來一直沒有得到很好的解決。因為配電網(wǎng)一般采用架空線路—電纜線路的混合線路,且線路分支較多,結構復雜,使配電網(wǎng)在故障定位上要比輸電網(wǎng)困難,許多在輸電網(wǎng)中已經(jīng)成熟的技術在配電網(wǎng)中無法實現(xiàn)。在發(fā)生故障后,由于故障電流比較微弱,對故障的定位更加困難。
行波測距技術最早應用在輸電線路上,其測量的準確度高,反應迅速,并且不受線路結構不對稱、互感器傳變誤差等因素的影響,因此得到了廣泛的應用。在行波測距中,最為關鍵的技術是對故障發(fā)生后的暫態(tài)行波波頭進行準確的識別。然而,由于暫態(tài)行波的頻帶在10k~100kHz不等,要完整采集故障行波,由采樣定理可知,保護裝置的采樣率就必須非常高。高采樣率會受到各種噪聲的干擾,例如白噪聲,脈沖噪聲等,這就使得行波波頭的識別非常困難。再加上在配電網(wǎng)中,線路電阻較大,行波能量衰減非常嚴重,使得行波的波頭變緩,奇異性降低,在噪聲的淹沒下,波頭的辨識就非常困難。極端情況下,系統(tǒng)在過零點或者經(jīng)高阻接地的情況下,行波信號非常微弱,與噪聲相比奇異性并未差異,利用傳統(tǒng)的小波變換等方法難以獲得準確的故障行波波頭到達時刻。
無跡卡爾曼濾波是基于最小方差原理的濾波方法,能夠在時域內濾除環(huán)境噪聲的干擾,減少偽故障點的干擾。通過構建合適的狀態(tài)方程,利用卡爾曼濾波在狀態(tài)估計上的能力,可以對故障行波進行辨識,推算出行波到達檢測裝置的時刻。
技術實現(xiàn)要素:
本發(fā)明對現(xiàn)有行波定位技術中的不足進行改進,提出一種配電網(wǎng)故障行波波頭的辨識方法。
本發(fā)明采用以下技術方案:
一種配電網(wǎng)故障行波波頭的辨識方法,其特征在于:所述方法包括以下步驟:
步驟1:對故障采集器得到的三相故障電壓行波進行凱倫貝爾變換,得到線模電壓分量,其中,凱倫貝爾變換為:式中u1,u2為線模電壓,u0為零模電壓,ua,ub,uc為各相電壓;
步驟2:構建行波波頭數(shù)學表達式,其表達式可以由以下函數(shù)表征:
其中,u(k)為k時刻故障線模電壓信號的值,T是行波到達故障檢測裝置的時刻,當k<T時,故障行波還沒有到達,系統(tǒng)正常,As表示基波信號的幅值,ωc為基波信號的角頻率,為基波信號的初始相角;當k>T時,信號發(fā)生突變,在基波信號的基礎上,疊加了暫態(tài)行波,其中Ae表示初始暫態(tài)行波波頭的幅值,Ts為行波衰減時間常數(shù)。
步驟3:根據(jù)步驟2構建的行波信號表達式,選取狀態(tài)變量構建離散化的行波信號狀態(tài)方程和觀測方程如下:
x(k)=x(k-1) k=1,2...
u(k)=H[x(k-1),k]+V(k) k=1,2...
式中,x(K)為k時刻系統(tǒng)狀態(tài)變量,x(k‐1)為k‐1時刻系統(tǒng)狀態(tài)變量,H[]表示故障電壓信號u(k)與狀態(tài)變量的函數(shù)關系,V(K)表示觀測噪聲。
步驟4:運用無跡卡爾曼濾波對故障行波電壓進行處理,得到去噪的行波和狀態(tài)變量T的收斂值。
4‐1、初始化狀態(tài)變量均值:
其中,x0為初始值,為初始向量均值,P0是初始協(xié)方差矩陣。
4‐2、計算sigma采樣點:
其中L為狀態(tài)空間的維數(shù),為6,則sigma點的個數(shù)為2L+1=13;為第k‐1時刻的狀態(tài)變量均值;Xi(k-1)為第k‐1時刻的sigma點集;Sigma點對應的權重系數(shù)為:
其中,λ為比例系數(shù),改變λ的大小可以調節(jié)sigma點與均值點之間的距離。
4‐3、計算狀態(tài)變量均值的一步估計,將k‐1時刻的sigma點分別代入狀態(tài)方程,得到k時刻的sigma點集以及其對應的均值
4‐4、計算協(xié)方差矩陣的一步估計:
4‐5、獲得卡爾曼增益:
其中,是觀測點集,是觀測點集的均值,PU(k),U(k)是觀測向量的自相關矩陣,PX(k),U(k)是觀測向量與狀態(tài)向量的互相關矩陣,Kk為卡爾曼增益。
4‐6、更新狀態(tài)估計值和協(xié)方差矩陣:
式中u(k)為步驟1變換得到的故障行波線模分量在k時刻的值。
完成k時刻的狀態(tài)變量和協(xié)方差矩陣的更新后,返回步驟4‐2,進行k+1時刻的估算。當k=N(N為故障信號的采樣點數(shù)),狀態(tài)變量和協(xié)方差矩陣停止更新,此時輸出變換得到的電壓信號U(k)和狀態(tài)變量T的值,此時的U(k)為去噪后的行波信號,T為故障行波波頭到達檢測裝置的時刻。
所述步驟4‐1協(xié)方差矩陣P0的取值如下:
其中0.0001<P11,P22...P66<0.1。
本發(fā)明與現(xiàn)有技術相比,具有以下優(yōu)點:
本發(fā)明采用無跡卡爾曼濾波進行波頭辨識,能夠濾除行波傳播過程中遇到的干擾信號,減少偽故障點的存在,精度更高。
本發(fā)明提出的行波波頭辨識的方法,能夠在行波信號微弱的情況下進行辨識,克服了原有算法在波頭奇異性降低的情況下無法識別的問題,具有更強的適用性。
附圖說明
圖1為實施配電網(wǎng)定位實驗仿真結構圖;
圖2為本發(fā)明公開的配電網(wǎng)故障行波波頭辨識方法流程圖;
圖3為故障行波線模電壓分量;
圖4為經(jīng)過無跡卡爾曼濾波后的行波線模電壓分量。
具體實施方式
下面結合說明書附圖和具體實施例對本發(fā)明的技術方案作進一步詳細介紹。
如圖1所示,本申請列舉的實施例是配電網(wǎng)C相接地故障測距實驗,采用的是ATP‐EMTP搭建線路模型進行實驗。其中,電壓源設計為理想電源,初始角為0°,來模擬三相無窮大電源。變壓器連結組別號為YD11,二次側電壓為10.5KV。變壓器后為簡單線路T型線路。線路末端故障采集裝置采樣頻率為1MHz,即每個采樣點之間的時間間隔為1μs,故障發(fā)生在第2000μs,故障采集裝置距離線路故障點19km。由于行波信號線模分量的傳播速度基本不受頻率、傳播距離的影響,設定其傳播速度為3×108m/s,則故障發(fā)生后行波信號線模分量傳播到檢測裝置的時間為:
下面以附圖1為實施例,詳細介紹配電網(wǎng)故障行波波頭的辨識方法,方法的步驟如附圖2所示:
步驟(1),對故障采集器得到的三相故障電壓行波進行凱倫貝爾變換,得到線模電壓分量,由于系統(tǒng)發(fā)生C相接地故障,線模電壓分量為ua,uc分別為A相,C相電壓,如圖3所示。
步驟(2),構建行波波頭數(shù)學表達式,其表達式可以由以下函數(shù)表征:
其中,u(k)為k時刻故障線模電壓信號的值,T是行波到達故障檢測裝置的時刻,當k<T時,故障行波還沒有到達,系統(tǒng)正常,As表示基波信號的幅值,ωc為基波信號的角頻率,為基波信號的初始相角;當k>T時,信號發(fā)生突變,在基波信號的基礎上,疊加了暫態(tài)行波,其中Ae表示初始暫態(tài)行波波頭的幅值,Ts為行波衰減時間常數(shù)。
步驟(3),根據(jù)步驟2構建的行波信號表達式,選取狀態(tài)變量構建離散化的行波信號狀態(tài)方程和觀測方程如下:
x(k)=x(k-1) k=1,2...
u(k)=H[x(k-1),k]+V(k) k=1,2...
式中,x(K)為k時刻系統(tǒng)狀態(tài)變量,x(k‐1)為k‐1時刻系統(tǒng)狀態(tài)變量,H[]表示故障電壓信號u(k)與狀態(tài)變量的函數(shù)關系,V(K)表示觀測噪聲。
步驟(4):運用無跡卡爾曼濾波對故障行波電壓進行處理,得到去噪的行波和狀態(tài)變量T的收斂值。
4‐1、初始化狀態(tài)變量均值:
其中,x0為初始值,根據(jù)仿真的10kV線路的實際情況,選取初始值為x0=(15000,314,0,10000,1800,500),
4‐2、計算sigma采樣點:
其中L為狀態(tài)空間的維數(shù),為6,則sigma點的個數(shù)為2L+1=13;為第k‐1時刻的狀態(tài)變量均值;Xi(k-1)為第k‐1時刻的sigma點集;Sigma點對應的權重系數(shù)為:
其中,選擇λ=0.5來進行計算
4‐3、計算狀態(tài)變量均值的一步估計,將k‐1時刻的sigma點分別代入狀態(tài)方程,得到k時刻的sigma點集以及其對應的均值
4‐4、計算協(xié)方差矩陣的一步估計:
4‐5、獲得卡爾曼增益:
其中,是觀測點集,是觀測點集的均值,PU(k),U(k)是觀測向量的自相關矩陣,PX(k),U(k)是觀測向量與狀態(tài)向量的互相關矩陣,Kk為卡爾曼增益。
4‐6、更新狀態(tài)估計值和協(xié)方差矩陣:
式中u(k)為步驟1變換得到的故障行波線模分量在k時刻的值。
完成k時刻的狀態(tài)變量和協(xié)方差矩陣的更新后,返回步驟4‐2,進行k+1時刻的估算。當k=N(N為故障信號的采樣點數(shù),本實例中N=2500),狀態(tài)變量和協(xié)方差矩陣停止更新,此時輸出變換得到的去噪后的電壓信號U(k)如圖4所示,此時T=2062.134μs,與理論值T=2063μs相差不超過1μs,說明本發(fā)明具有很高的工程實用性。
以上給出的實施例用以說明本發(fā)明和它的實際應用,并非對本發(fā)明作任何形式上的限制,任何一個本專業(yè)的技術人員在不偏離本發(fā)明技術方案的范圍內,依據(jù)以上技術和方法作一定的修飾和變更當視為等同變化的等效實施例。