采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng)的制作方法
【專利摘要】本發(fā)明涉及一種采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng),其濾波器、U型微粒分離模塊、回油筒、外桶依次置于底板上;濾波器和U型微粒分離模塊連接,其采用全頻段濾波器;U型微粒分離模塊包括一U型管,U型管上依次安裝有溫控模塊、磁化模塊、第一吸附模塊、旋轉(zhuǎn)磁場離心模塊、第二吸附模塊和消磁模塊;U型微粒分離模塊和回油筒的上方通過回油筒進(jìn)油管連接;內(nèi)筒置于外桶內(nèi),其安裝于端蓋上;螺旋流道收容于內(nèi)筒內(nèi),其和U型微粒分離模塊之間通過內(nèi)筒進(jìn)油管連接;內(nèi)筒進(jìn)油管位于回油筒進(jìn)油管內(nèi);濾芯設(shè)置在內(nèi)筒的內(nèi)壁上。本發(fā)明具有過濾性能好,適應(yīng)性和集成性高,使用壽命長等諸多優(yōu)點。
【專利說明】采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng) 【技術(shù)領(lǐng)域】
[0001] 本發(fā)明涉及一種液壓油過濾系統(tǒng),具體涉及一種采用全頻段濾波、磁化、吸附和旋 轉(zhuǎn)磁場的濾油系統(tǒng),屬于液壓設(shè)備技術(shù)領(lǐng)域。 【【背景技術(shù)】】
[0002] 國內(nèi)外的資料統(tǒng)計表明,液壓系統(tǒng)的故障大約有70%~85%是由于油液污染引起 的。固體顆粒則是油液污染中最普遍、危害作用最大的污染物。由固體顆粒污染物引起的液 壓系統(tǒng)故障占總污染故障的70%。在液壓系統(tǒng)油液中的顆粒污染物中,金屬磨肩占比在 20%~70%之間。采取有效措施濾除油液中的固體顆粒污染物,是液壓系統(tǒng)污染控制的關(guān) 鍵,也是系統(tǒng)安全運行的可靠保證。
[0003] 過濾器是液壓系統(tǒng)濾除固體顆粒污染物的關(guān)鍵元件。液壓油中的固體顆粒污染 物,除油箱可沉淀一部分較大顆粒外,主要靠濾油裝置來濾除。尤其是高壓過濾裝置,主要 用來過濾流向控制閥和液壓缸的液壓油,以保護(hù)這類抗污染能力差的液壓元件,因此對液 壓油的清潔度要求更高。
[0004] 然而,現(xiàn)有的液壓系統(tǒng)使用的高壓過濾器存在以下不足:(1)各類液壓元件對油液 的清潔度要求各不相同,油液中的固體微粒的粒徑大小亦各不相同,為此需要在液壓系統(tǒng) 的不同位置安裝多個不同類型濾波器,由此帶來了成本和安裝復(fù)雜度的問題;(2)液壓系統(tǒng) 中的過濾器主要采用濾餅過濾方式,過濾時濾液垂直于過濾元件表面流動,被截流的固體 微粒形成濾餅并逐漸增厚,過濾速度也隨之逐漸下降直至濾液停止流出,降低了過濾元件 的使用壽命。
[0005] 因此,為解決上述技術(shù)問題,確有必要提供一種創(chuàng)新的采用全頻段濾波、磁化、吸 附和旋轉(zhuǎn)磁場的濾油系統(tǒng),以克服現(xiàn)有技術(shù)中的所述缺陷。 【
【發(fā)明內(nèi)容】
】
[0006] 為解決上述技術(shù)問題,本發(fā)明的目的在于提供一種過濾性能好,適應(yīng)性和集成性 高,使用壽命長的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng)。
[0007] 為實現(xiàn)上述目的,本發(fā)明采取的技術(shù)方案為:采用全頻段濾波、磁化、吸附和旋轉(zhuǎn) 磁場的濾油系統(tǒng),其包括底板、濾波器、U型微粒分離模塊、回油筒、內(nèi)筒、螺旋流道、濾芯、外 桶以及端蓋;其中,所述濾波器、U型微粒分離模塊、回油筒、外桶依次置于底板上;所述濾波 器包括輸入管、外殼、輸出管、波紋管、彈性薄壁以及膠體阻尼層;其中,所述輸入管連接于 外殼的一端,其和一液壓油進(jìn)口對接;所述輸出管連接于外殼的另一端,其延伸入外殼內(nèi), 并和U型微粒分離模塊對接;所述彈性薄壁沿外殼的徑向安裝于外殼內(nèi);所述輸入管、輸出 管和彈性薄壁共同形成一 K型濾波器;所述彈性薄壁和外殼之間形成圓柱形的共振容腔;所 述彈性薄壁的軸向上均勻開有若干錐形阻尼孔,錐形阻尼孔連通共振容腔;所述波紋管呈 螺旋狀繞在共振容腔外,和共振容腔通過多個錐形插入管連通;所述波紋管各圈之間通過 若干支管連通,支管上設(shè)有開關(guān);所述波紋管和共振容腔組成插入式螺旋異構(gòu)串聯(lián)Η型濾波 器;所述U型微粒分離模塊包括一 U型管,U型管上依次安裝有溫控模塊、磁化模塊、第一吸附 模塊、旋轉(zhuǎn)磁場離心模塊、第二吸附模塊以及消磁模塊;所述U型微粒分離模塊和回油筒的 上方通過一回油筒進(jìn)油管連接;所述內(nèi)筒置于外桶內(nèi),其通過一頂板以及若干螺栓安裝于 端蓋上;所述螺旋流道收容于內(nèi)筒內(nèi),其和U型微粒分離模塊之間通過一內(nèi)筒進(jìn)油管連接; 所述內(nèi)筒進(jìn)油管位于回油筒進(jìn)油管內(nèi),并延伸入U型微粒分離模塊的中央,其直徑小于回油 筒進(jìn)油管直徑,且和回油筒進(jìn)油管同軸設(shè)置;所述濾芯設(shè)置在內(nèi)筒的內(nèi)壁上,其精度為1-5 微米;所述外桶的底部設(shè)有一液壓油出油口。
[0008] 本發(fā)明的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng)進(jìn)一步設(shè)置為:所述 輸入管和輸出管的軸線不在同一軸線上;所述錐形阻尼孔開口較寬處位于共振容腔內(nèi),其 錐度角為10°;所述錐形插入管開口較寬處位于波紋管內(nèi),其錐度角為10°;所述錐形插入管 和錐形阻尼孔的位置相互錯開;所述膠體阻尼層的內(nèi)層和外層分別為外層彈性薄壁和內(nèi)層 彈性薄壁,外層彈性薄壁和內(nèi)層彈性薄壁之間由若干支柱固定連接;所述外層彈性薄壁和 內(nèi)層彈性薄壁之間的夾層內(nèi)填充有加防凍劑的純凈水,純凈水內(nèi)懸浮有多孔硅膠;所述膠 體阻尼層靠近輸出管的一端和外殼相連;所述膠體阻尼層靠近輸出管的一端設(shè)有一活塞。
[0009] 本發(fā)明的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng)進(jìn)一步設(shè)置為:所述 溫控模塊包括加熱器、冷卻器和溫度傳感器;所述加熱器采用帶溫度檢測的重慶金鴻的潤 滑油加熱器;所述冷卻器選用表面蒸發(fā)式空冷器,冷卻器的翅片管選KLM型翅片管;溫度傳 感器采用鉑電阻溫度傳感器。
[0010] 本發(fā)明的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng)進(jìn)一步設(shè)置為:所述 磁化模塊包括鋁質(zhì)管道、若干繞組、鐵質(zhì)外殼、法蘭以及若干磁化電流輸出模塊;其中,所述 若干繞組分別繞在鋁質(zhì)管道外,各繞組由正繞組和逆繞組組成;所述鐵質(zhì)外殼包覆于鋁質(zhì) 管道上;所述法蘭焊接在鋁質(zhì)管道的兩端;每一磁化電流輸出模塊連接至一繞組。
[0011] 本發(fā)明的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng)進(jìn)一步設(shè)置為:所述 第一吸附模塊和第二吸附模塊均采用同極相鄰型吸附環(huán),該同極相鄰型吸附環(huán)包括鋁質(zhì)環(huán) 形管道、正向螺線管、反向螺線管以及鐵質(zhì)導(dǎo)磁帽;所述正向螺線管和反向螺線管分別布置 于鋁質(zhì)環(huán)形管道內(nèi),兩者通有方向相反的電流,使得正向螺線管和反向螺線管相鄰處產(chǎn)生 同性磁極;所述鐵質(zhì)導(dǎo)磁帽布置于鋁質(zhì)環(huán)形管道的內(nèi)壁上,其位于正向螺線管和反向螺線 管相鄰處、以及正向螺線管和反向螺線管軸線的中間點。
[0012] 本發(fā)明的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng)進(jìn)一步設(shè)置為:所述 第一吸附模塊和第二吸附模塊均采用帶電擊錘的同極相鄰型吸附環(huán),該帶電擊錘的同極相 鄰型吸附環(huán)包括鋁質(zhì)環(huán)形管道、正向螺線管、反向螺線管、鐵質(zhì)導(dǎo)磁帽、隔板、電擊錘以及電 磁鐵;所述正向螺線管和反向螺線管分別布置于鋁質(zhì)環(huán)形管道內(nèi),兩者通有方向相反的電 流,使得正向螺線管和反向螺線管相鄰處產(chǎn)生同性磁極;所述鐵質(zhì)導(dǎo)磁帽布置于鋁質(zhì)環(huán)形 管道的內(nèi)壁上,其位于正向螺線管和反向螺線管相鄰處、以及正向螺線管和反向螺線管軸 線的中間點;所述隔板位于正向螺線管和反向螺線管之間;所述電擊錘和電磁鐵位于隔板 之間;所述電磁鐵連接并能推動電擊錘,使電擊錘敲擊鋁質(zhì)環(huán)形管道內(nèi)壁。
[0013] 本發(fā)明的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng)進(jìn)一步設(shè)置為:所述 旋轉(zhuǎn)磁場離心模塊包括鋁質(zhì)管道、鐵質(zhì)外殼、三相對稱繞組、法蘭以及三相對稱電流模塊; 所述三相對稱繞組繞在鋁質(zhì)管道外;所述鐵質(zhì)外殼包覆于鋁質(zhì)管道上;所述法蘭焊接在鋁 質(zhì)管道的兩端;所述三相對稱電流模塊連接所述三相對稱繞組。
[0014] 本發(fā)明的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng)進(jìn)一步設(shè)置為:所述 回油筒的底部設(shè)有一溢流閥,該溢流閥底部設(shè)有一電控調(diào)節(jié)螺絲;所述溢流閥上設(shè)有一排 油口,該排油口通過管道連接至一油箱。
[0015] 本發(fā)明的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng)進(jìn)一步設(shè)置為:所述 內(nèi)筒的底部呈倒圓臺狀,其通過一內(nèi)筒排油管和回油筒連接,內(nèi)筒排油管上設(shè)有一電控止 回閥。
[0016] 本發(fā)明的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng)還設(shè)置為:所述內(nèi)筒 的中央豎直設(shè)有一空心圓柱,空心圓柱的上方設(shè)有壓差指示器,該壓差指示器安裝于端蓋 上;所述內(nèi)筒進(jìn)油管和螺旋流道相切連接。
[0017] 與現(xiàn)有技術(shù)相比,本發(fā)明具有如下有益效果:
[0018] 1.通過濾波器衰減液壓油的壓力/流量脈動,使濾芯在工作時不發(fā)生振動,以提高 過濾性能;液壓油在U型微粒分離模塊中實現(xiàn)固體微粒的分離,使油液中的固體微粒向管壁 運動,在U型微粒分離模塊出口處,富含固體微粒的管壁附近的油液通過回油筒進(jìn)油管進(jìn)入 回油筒后回流到油箱,而僅含微量小粒徑微粒的管道中心的油液則通過內(nèi)筒進(jìn)油管進(jìn)入內(nèi) 筒進(jìn)行高精度過濾,提高了濾芯的使用壽命,降低了濾波成本和復(fù)雜度;進(jìn)入內(nèi)筒進(jìn)油管的 油液以切向進(jìn)流的方式流入內(nèi)筒的螺旋流道,內(nèi)筒壁為濾芯,則濾液在離心力的作用下緊 貼濾芯流動,濾液平行于濾芯的表面快速流動,過濾后的液壓油則垂直于濾芯表面方向流 出到外筒,這種十字流過濾方式對濾芯表面的微粒實施掃流作用,抑制了濾餅厚度的增加, 沉積在內(nèi)筒底部的污染顆??啥〞r通過電控止回閥排出到回油筒,從而提高濾芯使用壽 命。
[0019] 2.通過控制液壓油的溫度和磁場強度,使油液中的顆粒強力磁化聚集成大顆粒, 并促使膠質(zhì)顆粒分解消融,通過吸附模塊形成高效吸附,通過消磁裝置對殘余顆粒消磁避 免危害液壓元件,從而使油液中固體微粒聚集成大顆粒運動到管壁附近。
[0020] 3.磁化需要的非均勻磁場的產(chǎn)生,需要多對正逆線圈對并通過不同大小的電流, 且電流數(shù)值可在線數(shù)字設(shè)定。 【【附圖說明】】
[0021] 圖1是本發(fā)明的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng)的結(jié)構(gòu)示意 圖。
[0022] 圖2是圖1中的濾波器的結(jié)構(gòu)示意圖。
[0023]圖3是插入式Η型濾波器示意圖。
[0024]圖4是單個的Η型濾波器和串聯(lián)的Η型濾波器頻率特性組合圖。其中,實線為單個的 Η型濾波器頻率特性。
[0025]圖5是Κ型濾波器的結(jié)構(gòu)示意圖。
[0026] 圖6是彈性薄壁的橫截面示意圖。
[0027] 圖7是膠體阻尼層的縱截面示意圖。
[0028] 圖8是圖1中的U型微粒分離模塊的示意圖。
[0029] 圖9是圖8中的磁化模塊的結(jié)構(gòu)示意圖。
[0030] 圖10是圖9中的繞組的結(jié)構(gòu)示意圖。
[0031] 圖11是圖9中的磁化電流輸出模塊的電路圖。
[0032] 圖12是圖8的第一吸附模塊(第二吸附模塊)為同極相鄰型吸附環(huán)的結(jié)構(gòu)示意圖。
[0033] 圖13是圖8中的第一吸附模塊(第二吸附模塊)為帶電擊錘的同極相鄰型吸附環(huán)的 結(jié)構(gòu)示意圖。
[0034] 圖14是圖8中的旋轉(zhuǎn)磁場離心模塊的結(jié)構(gòu)示意圖。 【【具體實施方式】】
[0035] 請參閱說明書附圖1至附圖14所示,本發(fā)明為一種采用全頻段濾波、磁化、吸附和 旋轉(zhuǎn)磁場的濾油系統(tǒng),其由底板6、濾波器8、U型微粒分離模塊3、回油筒7、內(nèi)筒15、螺旋流道 17、濾芯18、外桶19以及端蓋25等幾部分組成。其中,所述濾波器8、U型微粒分離模塊2、回油 筒7、外桶19依次置于底板6上。
[0036] 所述濾波器8用于將液壓油輸入,并可衰減液壓系統(tǒng)中的高、中、低頻段的脈動壓 力,和抑制流量波動。所述濾波器8由輸入管81、外殼89、輸出管811、波紋管83、彈性薄壁87 以及膠體阻尼層88等幾部分組成。
[0037]其中,所述輸入管81連接于外殼89的一端,其和一液壓油進(jìn)口 1對接;所述輸出管 811連接于外殼89的另一端,其延伸入外殼89內(nèi),其和U型微粒分離模塊3對接。所述彈性薄 壁87沿外殼的徑向安裝于外殼89內(nèi)。所述輸入管81和輸出管811的軸線不在同一軸線上,這 樣可以提高1 〇 %以上的濾波效果。
[0038]所述輸入管81、輸出管811和彈性薄壁87共同形成一 K型濾波器,從而衰減液壓系 統(tǒng)高頻壓力脈動。按集總參數(shù)法處理后得到的濾波器透射系數(shù)為:
[0039]
二-
[0040] a-介質(zhì)中音速P-流體密度d2-插入式輸出管直徑Z-特性阻抗。
[0041] 由上式可見,K型濾波器和電路中的電容作用類似。不同頻率的壓力脈動波通過該 濾波器時,透射系數(shù)隨頻率而不同。頻率越高,則透射系數(shù)越小,這表明高頻的壓力脈動波 在經(jīng)過濾波器時衰減得越厲害,從而起到了消除高頻壓力脈動的作用。
[0042] 所述K型濾波器的設(shè)計原理如下:管道中壓力脈動頻率較高時,壓力波動作用在流 體上對流體產(chǎn)生壓縮效應(yīng)。當(dāng)變化的流量通過輸入管進(jìn)入K型濾波器容腔時,液流超過平均 流量,擴(kuò)大的容腔可以吸收多余液流,而在低于平均流量時放出液流,從而吸收壓力脈動能 量。
[0043] 所述彈性薄壁87通過受迫機械振動來削弱液壓系統(tǒng)中高頻壓力脈動。按集總參數(shù) 法處理后得到的彈性薄壁固有頻率為:
[0044]
[0045] k-彈性薄壁結(jié)構(gòu)系數(shù)h-彈性薄壁厚度R-彈性薄壁半徑 [0046] E-彈性薄壁的楊氏模量P-彈性薄壁的質(zhì)量密度
[0047] η-彈性薄壁的載流因子μ-彈性薄壁的泊松比。
[0048] 代入實際參數(shù),對上式進(jìn)行仿真分析可以發(fā)現(xiàn),彈性薄壁87的固有頻率通常比Η型 濾波器的固有頻率高,而且其衰減頻帶也比Η型濾波器寬。在相對較寬的頻帶范圍內(nèi),彈性 薄壁對壓力脈動具有良好的衰減效果。同時,本發(fā)明的濾波器結(jié)構(gòu)中的彈性薄壁半徑較大 且較薄,其固有頻率更靠近中頻段,可實現(xiàn)對液壓系統(tǒng)中的中高頻壓力脈動的有效衰減。
[0049] 所述彈性薄壁87的設(shè)計原理如下:管道中產(chǎn)生中頻壓力脈動時,雙管插入式容腔 濾波器對壓力波動的衰減能力較弱,流入雙管插入式容腔的周期性脈動壓力持續(xù)作用在彈 性薄壁的內(nèi)外壁上,由于內(nèi)外壁之間有支柱固定連接,內(nèi)外彈性薄壁同時按脈動壓力的頻 率做周期性振動,該受迫振動消耗了流體的壓力脈動能量,從而實現(xiàn)中頻段壓力濾波。由虛 功原理可知,彈性薄壁消耗流體脈動壓力能量的能力和其受迫振動時的勢能和動能之和直 接相關(guān),為了提高中頻段濾波性能,彈性薄壁的半徑設(shè)計為遠(yuǎn)大于管道半徑,且薄壁的厚度 較小,典型值為小于O.lmm。
[0050] 進(jìn)一步的,所述彈性薄壁87和外殼89之間形成圓柱形的共振容腔85。所述彈性薄 壁87的軸向上均勻開有若干錐形阻尼孔86,以保證在整個濾波器的范圍內(nèi)均能實現(xiàn)插入式 串并聯(lián)濾波。錐形阻尼孔86連通共振容腔85。所述錐形阻尼孔開口較寬處位于共振容腔內(nèi), 其錐度角為10°,用于展寬濾波頻率范圍,按集總參數(shù)法處理后得到的濾波器固有角頻率 為:
[0051] (1 )
[0052] a-介質(zhì)中音速L一阻尼孔長S-阻尼孔橫截面積V-并聯(lián)共振容腔體積。
[0053]所述波紋管83呈螺旋狀繞在共振容腔85外,和共振容腔85通過多個錐形插入管82 連通。所述錐形插入管82開口較寬處位于波紋管83內(nèi),其錐度角為10°用于展寬濾波頻率范 圍。所述錐形插入管82和錐形阻尼孔86的位置相互錯開。所述波紋管83各圈之間通過若干 支管810連通,支管810上設(shè)有開關(guān)84。所述波紋管83和共振容腔85組成插入式螺旋異構(gòu)串 聯(lián)Η型濾波器。
[0054] 由圖4可知,串聯(lián)Η型濾波器有2個固有角頻率,在波峰處濾波效果較好,而在波谷 處則基本沒有濾波效果;插入式螺旋異構(gòu)串聯(lián)Η型濾波器中采用了螺旋異構(gòu)的波紋管83結(jié) 構(gòu),波紋管本身具有彈性,當(dāng)液壓系統(tǒng)的流量和壓力脈動經(jīng)過波紋管時,流體介質(zhì)導(dǎo)致液 壓-彈簧系統(tǒng)振動,抵消波動能量,從而起到濾波作用;同時,各圈波紋管83之間的若干支管 810的連通或斷開,引起波的干涉和疊加,從而改變串聯(lián)Η型濾波器的頻率特性;合理安排濾 波器參數(shù)以及連通支管的數(shù)量和位置,可使串聯(lián)Η型濾波器的頻率特性的波谷抬高,使濾波 器在整個中低頻段均有良好的濾波性能,實現(xiàn)中低頻段的全頻譜濾波。
[0055] 所述彈性薄壁87的內(nèi)側(cè)設(shè)有一膠體阻尼層88。所述膠體阻尼層88的內(nèi)層和外層分 別為外層彈性薄壁81和內(nèi)層彈性薄壁82,外層彈性薄壁81和內(nèi)層彈性薄壁82之間由若干支 柱814固定連接。外層彈性薄壁81和內(nèi)層彈性薄壁82之間的夾層內(nèi)填充有加防凍劑的純凈 水816,純凈水816內(nèi)懸浮有多孔硅膠815。所述膠體阻尼層88靠近輸出管811的一端和外殼 89相連;所述膠體阻尼層88靠近輸出管811的一端還設(shè)有一活塞817。
[0056]由于外層彈性薄壁81和內(nèi)層彈性薄壁82間距很小且由支柱814固定連接,在壓力 脈動垂直作用于薄壁時,內(nèi)外壁產(chǎn)生近乎一致的形變,膠體阻尼層厚度幾乎保持不變,對壓 力脈動沒有阻尼作用;膠體阻尼層88的活塞817只感應(yīng)水平方向的流量脈動,流量脈動增強 時,活塞817受壓使膠體阻尼層收縮,擠壓作用使得膠體阻尼層88中的水由納米級輸送通道 進(jìn)入微米級中央空隙;流量脈動減弱時,活塞817受反壓,此時膠體阻尼層膨脹,膠體阻尼層 中的水從中央空隙經(jīng)通道排出。在此過程中,由于硅膠815微通道吸附的力學(xué)效應(yīng)、通道表 面分子尺度的粗糙效應(yīng)及化學(xué)非均質(zhì)效應(yīng),活塞跟隨膠體阻尼層收縮和膨脹過程中做"氣-液-固"邊界的界面功,從而對流量脈動實現(xiàn)衰減,其實質(zhì)上是一個并行R型濾波器。該濾波 器相對于一般的液體阻尼器的優(yōu)勢在于:它通過"氣-液-固"邊界的界面功的方式衰減流量 脈動,可以在不產(chǎn)生熱量的情況下吸收大量機械能,且能量消耗不依賴于活塞速度,衰減效 率有了顯著提高。
[0057]本發(fā)明還能實線工況自適應(yīng)壓力脈動衰減。當(dāng)液壓系統(tǒng)工況變化時,既執(zhí)行元件 突然停止或運行,以及閥的開口變化時,會導(dǎo)致管路系統(tǒng)的特性阻抗發(fā)生突變,從而使原管 道壓力隨時間和位置變化的曲線也隨之改變,則壓力峰值的位置亦發(fā)生變化。由于本發(fā)明 的濾波器的軸向長度設(shè)計為大于系統(tǒng)主要壓力脈動波長,且濾波器的插入式螺旋異構(gòu)串聯(lián) Η型濾波器的容腔長度、K型濾波器的長度和彈性薄壁的長度和濾波器軸線長度相等,保證 了壓力峰值位置一直處于濾波器的有效作用范圍內(nèi);而插入式螺旋異構(gòu)串聯(lián)Η型濾波器的 錐形阻尼孔86開在彈性薄壁87上,沿軸線方向均勻分布,螺旋異構(gòu)纏繞的波紋管83和共振 容腔85間的錐形插入管在軸向均勻分布,使得壓力峰值位置變化對濾波器的性能幾乎沒有 影響,從而實現(xiàn)了工況自適應(yīng)濾波功能??紤]到三種濾波結(jié)構(gòu)軸向尺寸和濾波器相當(dāng),這一 較大的尺寸也保證了液壓濾波器具備較強的壓力脈動衰減能力。
[0058] 采用本發(fā)明的壓力脈動抑制裝置進(jìn)行液壓脈動濾波的方法如下:
[0059] 1),液壓流體通過輸入管進(jìn)入Κ型濾波器,擴(kuò)大的容腔吸收多余液流,完成高頻壓 力脈動的濾波;
[0060] 2),通過彈性薄壁87受迫振動,消耗流體的壓力脈動能量,完成中頻壓力脈動的濾 波;
[0061] 3),通過插入式螺旋異構(gòu)串聯(lián)Η型濾波器,通過錐形阻尼孔、錐形插入管和流體產(chǎn) 生共振,消耗脈動能量,完成低頻壓力脈動的濾波;
[0062] 4),將濾波器的軸向長度設(shè)計為大于液壓系統(tǒng)主要壓力脈動波長,且插入式串并 聯(lián)Η型濾波器長度、濾波器長度和彈性薄壁87長度同濾波器長度相等,使壓力峰值位置一直 處于濾波器的有效作用范圍,實現(xiàn)系統(tǒng)工況改變時壓力脈動的濾波。
[0063] 所述U型微粒分離模塊3包括一 U型管31,U型管31上依次安裝有溫控模塊32、磁化 模塊33、第一吸附模塊34、旋轉(zhuǎn)磁場離心模塊36、第二吸附模塊37以及消磁模塊35。
[0064]所述溫控模塊32主要目的是為磁化模塊33提供最佳的磁化溫度40-50 °C,同時還 兼具油液降粘的作用,其包括加熱器、冷卻器和溫度傳感器。所述加熱器采用帶溫度檢測的 重慶金鴻的潤滑油加熱器。所述冷卻器可選用表面蒸發(fā)式空冷器,兼有水冷和空冷的優(yōu)點, 散熱效果好,采用光管,流體阻力小;冷卻器翅片類型為高翅,翅片管選KLM型翅片管,傳熱 性能好,接觸熱阻小,翅片與管子接觸面積大,貼合緊密,牢固,承受冷熱急變能力佳,翅片 根部抗大氣腐蝕性能高;空冷器的管排數(shù)最優(yōu)為8。所述溫度傳感器采用鉑電阻溫度傳感 器。
[0065]所述磁化模塊33實現(xiàn)金屬顆粒的強力磁化,并使微米級的金屬顆粒聚合成大顆 粒,便于后續(xù)吸附分離。同時磁化模塊32還需要提供非均勻磁場,對液壓油中的膠質(zhì)顆粒進(jìn) 行磁化分解,使膠質(zhì)微粒分解為更小粒徑尺寸的微粒,減輕污染。
[0066]所述磁化模塊33由鋁質(zhì)管道331、若干繞組332、鐵質(zhì)外殼333、法蘭334以及若干磁 化電流輸出模塊335組成。其中,所述鋁質(zhì)管道331使油液從其中流過而受到磁化處理,且鋁 的磁導(dǎo)率很低,可以使管道331中獲得較高的磁場強度。
[0067]所述若干繞組332分別繞在鋁質(zhì)管道331外,由直徑為1.0mm左右的銅絲涂覆絕緣 漆制成。各繞組332都是相互獨立設(shè)置的,分別由相應(yīng)的磁化電流輸出模塊335控制,其中電 流根據(jù)系統(tǒng)需要各不相同。由于每圈繞組332相互獨立,其引出端會造成該線圈組成的電流 環(huán)不是真正的"圓",而是有個缺口,這會造成鋁質(zhì)管道331內(nèi)磁場的徑向分布不均勻,從而 影響磁化效果。為解決此問題,本創(chuàng)作的每圈繞組332都由正繞組336和逆繞組337組成,目 的是為了產(chǎn)生同極性方向的磁場并同時彌補缺口造成的磁場不均衡。正繞組和逆繞組內(nèi)的 電流大小相等。在鋁質(zhì)管道331軸線方向上排列有多對正逆繞組,通過不同的電流,用以形 成前述要求的非均勻磁場。
[0068]所述鐵質(zhì)外殼333包覆于鋁質(zhì)管道331上,鐵質(zhì)的材料會屏蔽掉大部分的磁通。所 述法蘭334焊接在鋁質(zhì)管道331的兩端,并通過法蘭法蘭334在U型管20中。
[0069]每一磁化電流輸出模塊335連接至一繞組332,其利用數(shù)字電位計實時修改阻值的 特點,實現(xiàn)非均勻磁場的實時控制。所述磁化電流輸出模塊335的電路原理圖可參見附圖5, 其使用的數(shù)字電位計為AD5206,具有6通道的輸。運放AD8601和M0S管2N7002通過負(fù)反饋實 現(xiàn)了高精度的電壓跟隨輸出。恒定大電流輸出采用了德州儀器(TI)的高電壓、大電流的運 放0ΡΑ 549〇
[0070]所述第一吸附模塊34用于吸附經(jīng)磁化模塊33磁化后的磁性聚合大微粒,其可采用 同極相鄰型吸附環(huán),該同極相鄰型吸附環(huán)由鋁質(zhì)環(huán)形管道341、正向螺線管342、反向螺線管 343以及鐵質(zhì)導(dǎo)磁帽344等部件組成。其中,所述正向螺線管342和反向螺線管343分別布置 于鋁質(zhì)環(huán)形管道341,兩者通有方向相反的電流,使得正向螺線管342和反向螺線管343相鄰 處產(chǎn)生同性磁極。所述鐵質(zhì)導(dǎo)磁帽344布置于鋁質(zhì)環(huán)形管道341的內(nèi)壁上,其位于正向螺線 管342和反向螺線管343相鄰處、以及正向螺線管342和反向螺線管343軸線的中間點。
[0071]所述同極相鄰型吸附環(huán)的設(shè)計原理如下:通電正向螺線管342、反向螺線管343,相 鄰的正向螺線管342、反向螺線管343通有方向相反的電流,使得正向螺線管342、反向螺線 管343相鄰處產(chǎn)生同性磁極;同時,鋁質(zhì)環(huán)形管道341能夠改善磁路,加大管道內(nèi)壁處的磁場 強度,增強鐵質(zhì)導(dǎo)磁帽344對顆粒的捕獲吸附能力。各正向螺線管342、反向螺線管343電流 可根據(jù)顆粒的粒徑大小和濃度不同而變化,以獲得最佳吸附性能。
[0072]進(jìn)一步的,所述第一吸附模塊34也可采用帶電擊錘的同極相鄰型吸附環(huán),該帶電 擊錘的同極相鄰型吸附環(huán)由鋁質(zhì)環(huán)形管道341、正向螺線管342、反向螺線管343、鐵質(zhì)導(dǎo)磁 帽344、隔板345、電擊錘346以及電磁鐵347等部件組成。其中,所述正向螺線管342和反向螺 線管343分別布置于鋁質(zhì)環(huán)形管道341,兩者通有方向相反的電流,使得正向螺線管342和反 向螺線管343相鄰處產(chǎn)生同性磁極。所述鐵質(zhì)導(dǎo)磁帽344布置于鋁質(zhì)環(huán)形管道341的內(nèi)壁上, 其位于正向螺線管342和反向螺線管343相鄰處、以及正向螺線管342和反向螺線管343軸線 的中間點。所述電擊錘346和電磁鐵347位于隔板345之間。所述電磁鐵347連接并能推動電 擊錘346,使電擊錘346敲擊錯質(zhì)環(huán)形管道342內(nèi)壁。
[0073]所述帶電擊錘的同極相鄰型吸附環(huán)的設(shè)計原理如下:通電正向螺線管342、反向螺 線管343,相鄰的正向螺線管342、反向螺線管343通有方向相反的電流,使得正向螺線管 342、反向螺線管343相鄰處產(chǎn)生同性磁極;同時,鋁質(zhì)環(huán)形管道341能夠改善磁路,加大管道 內(nèi)壁處的磁場強度,增強鐵質(zhì)導(dǎo)磁帽344對顆粒的捕獲吸附能力。各正向螺線管342、反向螺 線管343電流可根據(jù)顆粒的粒徑大小和濃度不同而變化,以獲得最佳吸附性能。而通過電擊 錘346的設(shè)置,防止顆粒在鐵質(zhì)導(dǎo)磁帽344處大量堆積,影響吸附效果。此時,通過電磁鐵347 控制電擊錘346敲擊管道341的內(nèi)壁,使得被吸附的顆粒向兩側(cè)分散開。同時,在清洗管道 341時,電擊錘346的敲擊還可以提高清洗效果。
[0074]所述第一吸附模塊34設(shè)計成U型,在油液進(jìn)入U型吸附管道時,顆粒在重力、離心力 的作用下,向一側(cè)管壁移動,在加上磁場力作用,徑向移動速度加快,顆粒吸附的效率得以 提高;在油液離開U型吸附管道上升時,重力和磁場力的合力使得顆粒沿斜向下的方向運 動,延長了顆粒受力時間,提高了顆粒吸附的效率。
[0075]所述旋轉(zhuǎn)磁場離心模塊36利用旋轉(zhuǎn)磁場離心未被第一吸附裝置34吸附的微小磁 化顆粒,其由鋁質(zhì)管道361、鐵質(zhì)外殼362、三相對稱繞組363、法蘭364以及三相對稱電流模 塊365組成。所述三相對稱繞組363繞在鋁質(zhì)管道361外。所述鐵質(zhì)外殼362包覆于鋁質(zhì)管道 361上。所述法蘭364焊接在鋁質(zhì)管道361的兩端。所述三相對稱電流模塊365連接所述三相 對稱繞組363。
[0076]所述旋轉(zhuǎn)磁場離心模塊36的工作原理如下:未被吸附的微小磁化顆粒進(jìn)入旋轉(zhuǎn)磁 場離心模塊36,三相對稱電流模塊365使三相對稱繞組363中流過三相對稱電流,該電流在 鋁質(zhì)管道361內(nèi)產(chǎn)生旋轉(zhuǎn)磁場,磁化顆粒在旋轉(zhuǎn)磁場作用下受到磁場力的作用,并在該力的 作用下以螺旋狀前進(jìn),同時向管壁運動。因此,調(diào)節(jié)磁場強度即可使油液中的顆粒從油液中 "分離"出來,聚集在鋁質(zhì)管道361管壁附近,便于后續(xù)吸附捕獲。
[0077]所述第二吸附裝置37和所述第一吸附裝置34結(jié)構(gòu)相同,功能和作用機理亦相同, 其能進(jìn)一步吸附經(jīng)旋轉(zhuǎn)磁場離心模塊36分離的顆粒。
[0078]所述消磁模塊35給磁化顆粒消磁,防止殘余磁性微粒通過回油筒進(jìn)油管進(jìn)入液壓 回路,對污染敏感液壓元件造成損傷。
[0079] 所述U型微粒分離模塊3和回油筒7的上方通過一回油筒進(jìn)油管22連接;通過U型微 粒分離模塊3處理后,U型管31管壁附近的油液富含聚合顆粒,通過回油筒進(jìn)油管22進(jìn)入回 油筒7后回流到油箱。
[0080] 所述回油筒7的底部設(shè)有一溢流閥8,該溢流閥8底部設(shè)有一電控調(diào)節(jié)螺絲9;所述 溢流閥8上設(shè)有一排油口 10,該排油口 10通過管道20連接至一油箱11。
[0081] 所述內(nèi)筒15置于外桶19內(nèi),其通過一頂板13以及若干螺栓21安裝于端蓋25上。所 述螺旋流道17收容于內(nèi)筒15內(nèi),其和U型微粒分離模塊3之間通過一內(nèi)筒進(jìn)油管12連接,具 體的說,所述內(nèi)筒進(jìn)油管12和螺旋流道17相切連接。U型管31管道中心的油液僅含微量小粒 徑微粒,通過內(nèi)筒進(jìn)油管12進(jìn)入內(nèi)筒15實現(xiàn)高精度過濾,從而實現(xiàn)固體微粒分離。進(jìn)一步 的,所述內(nèi)筒進(jìn)油管12位于回油筒進(jìn)油管22內(nèi),并延伸入U型微粒分離模塊3的中央,其直徑 小于回油筒進(jìn)油管22直徑,且和回油筒進(jìn)油管22同軸設(shè)置。
[0082] 進(jìn)一步的,所述內(nèi)筒15的底部呈倒圓臺狀,其通過一內(nèi)筒排油管23和回油筒7連 接,內(nèi)筒排油管23上設(shè)有一電控止回閥24。所述內(nèi)筒15的中央豎直設(shè)有一空心圓柱16,空心 圓柱16的上方設(shè)有壓差指示器14,該壓差指示器14安裝于端蓋25上。
[0083] 所述濾芯18設(shè)置在內(nèi)筒15的內(nèi)壁上,其精度為1-5微米。
[0084] 所述外桶19的底部設(shè)有一液壓油出油口 5,通過液壓油出油口 5將過濾好的液壓油 排出。
[0085] 在本發(fā)明中,由于U型微粒分離模塊3對油液內(nèi)固體微粒分離聚合作用,在U型微粒 分離模塊3出口處的油液中,中心的油液僅含微量小粒徑微粒,該部分油液從內(nèi)筒進(jìn)油管12 流入到內(nèi)筒15進(jìn)行高精度過濾;而管壁附近的油液富含聚合顆粒,該部分油液通過回油筒 進(jìn)油管22進(jìn)入回油筒7,再經(jīng)溢流閥8的排油口 10流回油箱11,從而實現(xiàn)固體微粒按顆粒粒 徑分流濾波。此處,回油筒7和溢流閥8起到了前述的粗濾作用,從而節(jié)省了過濾器個數(shù),降 低了系統(tǒng)成本和復(fù)雜度。溢流閥8的電控調(diào)節(jié)螺絲9用于調(diào)節(jié)溢流壓力,將其壓力調(diào)整到略 低于過濾出口處壓力,以保證內(nèi)筒15過濾流量。
[0086] 另外,傳統(tǒng)的過濾器主要采用濾餅過濾方式,過濾時濾液垂直于過濾元件表面流 動,被截流的固體微粒形成濾餅并逐漸增厚,過濾速度也隨之逐漸下降,直至濾液停止流 出,降低了過濾元件的使用壽命。在本本發(fā)明中,來自內(nèi)筒進(jìn)油管12攜帶小粒徑微粒的濾液 以切向進(jìn)流的方式流入內(nèi)筒15的螺旋流道17,螺旋通道17側(cè)面的內(nèi)筒15壁為高精度濾芯 18,濾液在離心力的作用下緊貼濾芯18表面,濾液平行于濾芯18的表面快速流動,過濾后的 液壓油則垂直于濾芯18表面方向流出到外筒19,這兩個流動的方向互相垂直交錯,故稱其 為十字流過濾。濾液的快速流動對聚集在濾芯18表面的微粒施加了剪切掃流作用,從而抑 制了濾餅厚度的增加,使得過濾速度近乎恒定,過濾壓力也不會隨時間的流逝而升高,濾芯 的使用壽命因而大幅度提高。隨著過濾時間的累積,沉積在內(nèi)筒15倒圓臺底部的污染顆粒 逐步增加,過濾速度緩慢下降,內(nèi)筒15內(nèi)未過濾的濾液沿中心的空心圓筒16上升,此時,壓 差指示器14起作用,監(jiān)控其壓力變化,亦即內(nèi)筒15底部濾芯18的堵塞情況,若超過閾值,則 調(diào)節(jié)電控調(diào)節(jié)螺絲9降低溢流壓力,并同時打開止回閥24,使內(nèi)筒15底部含較多污染顆粒的 濾液在壓差作用下通過內(nèi)筒排油管23排出到回油筒7,避免了底部濾芯18堵塞狀況惡化,從 而延長了濾芯18使用壽命。
[0087] 采用上述濾油裝置對回流液壓油處理的工藝步驟如下:
[0088] 1),液壓管路中的油液通過濾波器8,濾波器8衰減液壓系統(tǒng)中的高、中、低頻段的 脈動壓力,以及抑制流量波動;
[0089] 2),回流液壓油進(jìn)入U型微粒分離模塊3的溫控模塊32,通過溫控模塊32調(diào)節(jié)油溫 到最佳的磁化溫度40-50°C,之后進(jìn)入磁化模塊33;
[0090] 3),通過磁化模塊33對回油進(jìn)行磁化,使微米級的金屬顆粒聚合成大顆粒,之后送 至第一吸附模塊34;
[0091] 4),通過第一吸附模塊34吸附回油中的磁性聚合微粒,之后回油送至旋轉(zhuǎn)磁場離 心模塊36;
[0092] 5),旋轉(zhuǎn)磁場離心模塊36利用旋轉(zhuǎn)磁場分離未吸附的磁化微粒,之后回油送至第 二吸附模塊37;
[0093] 6),第二吸附模塊37二次吸附回油中的磁性聚合微粒;
[0094] 7 ),通過消磁模塊35消除磁性微粒磁性;
[0095] 8),之后U型微粒分離模塊3管壁附近的油液通過回油筒進(jìn)油管22進(jìn)入回油筒7后 回流到油箱,而含微量小粒徑微粒的管道中心的油液則通過內(nèi)筒進(jìn)油管12進(jìn)入內(nèi)筒15進(jìn)行 高精度過濾;
[0096] 9 ),攜帶小粒徑微粒的油液以切向進(jìn)流的方式流入內(nèi)筒15的螺旋流道17,油液在 離心力的作用下緊貼濾芯流動,并進(jìn)行高精度過濾;
[0097] 10),高精度過濾后的油液排入外筒19,并通過外筒19底部的液壓油出油口 5排出。
[0098] 以上的【具體實施方式】僅為本創(chuàng)作的較佳實施例,并不用以限制本創(chuàng)作,凡在本創(chuàng) 作的精神及原則之內(nèi)所做的任何修改、等同替換、改進(jìn)等,均應(yīng)包含在本創(chuàng)作的保護(hù)范圍之 內(nèi)。
【主權(quán)項】
1. 采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng),其特征在于:包括底板、濾波 器、U型微粒分離模塊、回油筒、內(nèi)筒、螺旋流道、濾芯、外桶以及端蓋;其中,所述濾波器、U型 微粒分離模塊、回油筒、外桶依次置于底板上;所述濾波器包括輸入管、外殼、輸出管、波紋 管、彈性薄壁以及膠體阻尼層;其中,所述輸入管連接于外殼的一端,其和一液壓油進(jìn)口對 接;所述輸出管連接于外殼的另一端,其延伸入外殼內(nèi),并和U型微粒分離模塊對接;所述彈 性薄壁沿外殼的徑向安裝于外殼內(nèi);所述輸入管、輸出管和彈性薄壁共同形成一 K型濾波 器;所述彈性薄壁和外殼之間形成圓柱形的共振容腔;所述彈性薄壁的軸向上均勻開有若 干錐形阻尼孔,錐形阻尼孔連通共振容腔;所述波紋管呈螺旋狀繞在共振容腔外,和共振容 腔通過多個錐形插入管連通;所述波紋管各圈之間通過若干支管連通,支管上設(shè)有開關(guān);所 述波紋管和共振容腔組成插入式螺旋異構(gòu)串聯(lián)Η型濾波器;所述U型微粒分離模塊包括一 U 型管,U型管上依次安裝有溫控模塊、磁化模塊、第一吸附模塊、旋轉(zhuǎn)磁場離心模塊、第二吸 附模塊以及消磁模塊;所述U型微粒分離模塊和回油筒的上方通過一回油筒進(jìn)油管連接;所 述內(nèi)筒置于外桶內(nèi),其通過一頂板以及若干螺栓安裝于端蓋上;所述螺旋流道收容于內(nèi)筒 內(nèi),其和U型微粒分離模塊之間通過一內(nèi)筒進(jìn)油管連接;所述內(nèi)筒進(jìn)油管位于回油筒進(jìn)油管 內(nèi),并延伸入U型微粒分離模塊的中央,其直徑小于回油筒進(jìn)油管直徑,且和回油筒進(jìn)油管 同軸設(shè)置;所述濾芯設(shè)置在內(nèi)筒的內(nèi)壁上,其精度為1-5微米;所述外桶的底部設(shè)有一液壓 油出油口。2. 如權(quán)利要求1所述的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng),其特征在 于:所述輸入管和輸出管的軸線不在同一軸線上;所述錐形阻尼孔開口較寬處位于共振容 腔內(nèi),其錐度角為10° ;所述錐形插入管開口較寬處位于波紋管內(nèi),其錐度角為10° ;所述錐 形插入管和錐形阻尼孔的位置相互錯開;所述膠體阻尼層的內(nèi)層和外層分別為外層彈性薄 壁和內(nèi)層彈性薄壁,外層彈性薄壁和內(nèi)層彈性薄壁之間由若干支柱固定連接;所述外層彈 性薄壁和內(nèi)層彈性薄壁之間的夾層內(nèi)填充有加防凍劑的純凈水,純凈水內(nèi)懸浮有多孔硅 膠;所述膠體阻尼層靠近輸出管的一端和外殼相連;所述膠體阻尼層靠近輸出管的一端設(shè) 有一活塞。3. 如權(quán)利要求1所述的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng),其特征在 于:所述溫控模塊包括加熱器、冷卻器和溫度傳感器;所述加熱器采用帶溫度檢測的重慶金 鴻的潤滑油加熱器;所述冷卻器選用表面蒸發(fā)式空冷器,冷卻器的翅片管選KLM型翅片管; 溫度傳感器采用鉑電阻溫度傳感器。4. 如權(quán)利要求1所述的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng),其特征在 于:所述磁化模塊包括鋁質(zhì)管道、若干繞組、鐵質(zhì)外殼、法蘭以及若干磁化電流輸出模塊;其 中,所述若干繞組分別繞在鋁質(zhì)管道外,各繞組由正繞組和逆繞組組成;所述鐵質(zhì)外殼包覆 于鋁質(zhì)管道上;所述法蘭焊接在鋁質(zhì)管道的兩端;每一磁化電流輸出模塊連接至一繞組。5. 如權(quán)利要求1所述的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng),其特征在 于:所述第一吸附模塊和第二吸附模塊均采用同極相鄰型吸附環(huán),該同極相鄰型吸附環(huán)包 括鋁質(zhì)環(huán)形管道、正向螺線管、反向螺線管以及鐵質(zhì)導(dǎo)磁帽;所述正向螺線管和反向螺線管 分別布置于鋁質(zhì)環(huán)形管道內(nèi),兩者通有方向相反的電流,使得正向螺線管和反向螺線管相 鄰處產(chǎn)生同性磁極;所述鐵質(zhì)導(dǎo)磁帽布置于鋁質(zhì)環(huán)形管道的內(nèi)壁上,其位于正向螺線管和 反向螺線管相鄰處、以及正向螺線管和反向螺線管軸線的中間點。6. 如權(quán)利要求1所述的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng),其特征在 于:所述第一吸附模塊和第二吸附模塊均采用帶電擊錘的同極相鄰型吸附環(huán),該帶電擊錘 的同極相鄰型吸附環(huán)包括鋁質(zhì)環(huán)形管道、正向螺線管、反向螺線管、鐵質(zhì)導(dǎo)磁帽、隔板、電擊 錘以及電磁鐵;所述正向螺線管和反向螺線管分別布置于鋁質(zhì)環(huán)形管道內(nèi),兩者通有方向 相反的電流,使得正向螺線管和反向螺線管相鄰處產(chǎn)生同性磁極;所述鐵質(zhì)導(dǎo)磁帽布置于 鋁質(zhì)環(huán)形管道的內(nèi)壁上,其位于正向螺線管和反向螺線管相鄰處、以及正向螺線管和反向 螺線管軸線的中間點;所述隔板位于正向螺線管和反向螺線管之間;所述電擊錘和電磁鐵 位于隔板之間;所述電磁鐵連接并能推動電擊錘,使電擊錘敲擊鋁質(zhì)環(huán)形管道內(nèi)壁。7. 權(quán)利要求1所述的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng),其特征在于: 所述旋轉(zhuǎn)磁場離心模塊包括鋁質(zhì)管道、鐵質(zhì)外殼、三相對稱繞組、法蘭以及三相對稱電流模 塊;所述三相對稱繞組繞在鋁質(zhì)管道外;所述鐵質(zhì)外殼包覆于鋁質(zhì)管道上;所述法蘭焊接在 鋁質(zhì)管道的兩端;所述三相對稱電流模塊連接所述三相對稱繞組。8. 權(quán)利要求1所述的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng),其特征在于: 所述回油筒的底部設(shè)有一溢流閥,該溢流閥底部設(shè)有一電控調(diào)節(jié)螺絲;所述溢流閥上設(shè)有 一排油口,該排油口通過管道連接至一油箱。9. 權(quán)利要求1所述的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng),其特征在于: 所述內(nèi)筒的底部呈倒圓臺狀,其通過一內(nèi)筒排油管和回油筒連接,內(nèi)筒排油管上設(shè)有一電 控止回閥。10. 權(quán)利要求1所述的采用全頻段濾波、磁化、吸附和旋轉(zhuǎn)磁場的濾油系統(tǒng),其特征在 于:所述內(nèi)筒的中央豎直設(shè)有一空心圓柱,空心圓柱的上方設(shè)有壓差指示器,該壓差指示器 安裝于端蓋上;所述內(nèi)筒進(jìn)油管和螺旋流道相切連接。
【文檔編號】F15B21/04GK105864220SQ201610316018
【公開日】2016年8月17日
【申請日】2016年5月12日
【發(fā)明人】李偉波
【申請人】紹興文理學(xué)院